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Abstract

As machines become more and more portable, and part of our everyday life, it be-

comes apparent that developing interactive and ubiquitous systems is an important

aspect of new music applications created by the research community. We are inter-

ested in developing a robust layer for the automatic annotation of audio signals, to

be used in various applications, from music search engines to interactive installa-

tions, and in various contexts, from embedded devices to audio content servers. We

propose adaptations of existing signal processing techniques to a real time context.

Amongst these annotation techniques, we concentrate on low and mid-level tasks

such as onset detection, pitch tracking, tempo extraction and note modelling. We

present a framework to extract these annotations and evaluate the performances of

different algorithms.

The first task is to detect onsets and offsets in audio streams within short la-

tencies. The segmentation of audio streams into temporal objects enables various

manipulation and analysis of metrical structure. Evaluation of different algorithms

and their adaptation to real time are described. We then tackle the problem of

fundamental frequency estimation, again trying to reduce both the delay and the

computational cost. Different algorithms are implemented for real time and exper-

imented on monophonic recordings and complex signals. Spectral analysis can be

used to label the temporal segments; the estimation of higher level descriptions is

approached. Techniques for modelling of note objects and localisation of beats are

implemented and discussed.

Applications of our framework include live and interactive music installations,

and more generally tools for the composers and sound engineers. Speed optimi-

sations may bring a significant improvement to various automated tasks, such as

automatic classification and recommendation systems. We describe the design of

our software solution, for our research purposes and in view of its integration within

other systems.





Résumé

Alors que les machines deviennent de plus en plus portables et partie intégrante de

notre quotidien, il apparait clairement que le dévelopement de systèmes interactifs

et omniprésents est un aspect important des nouvelles applications créées par la

communauté scientifique. Nous nous intéressons à la construction d’une couche

robuste pour l’annotation automatique de signaux audio, utilisable dans des appli-

cations variées, des moteurs de recherche de musique aux installations interactives,

et dans des contextes divers, processeurs embarqués ou serveurs de contenu audio.

Nous proposons d’adapter des techniques existantes de traitement du signal à un

contexte temps-réel. Parmi ces techniques d’annotation, nous nous concentrons

sur des taches de bas et moyen niveaux telles que la détection d’attaque, le suivi

de hauteur, l’extraction du tempo et le modelage de notes. Nous présentons un

environnement logiciel pour extraire ces annotations et évaluer les performances de

différents algorithmes.

La première tâche sera de détecter les débuts et fin d’évenements sonores dans

les flux audio avec une faible latence. La segmentation des flux audio en objets tem-

porels favorise les manipulations et analyse de la structure métrique. L’évaluation

de plusieurs algorithmes et leur adaptation pour le temps réel est décrite. Nous

addressons ensuite le problème de l’estimation de la fréquence fondamentale, à

nouveau en essayant de réduire le délai et le coût de calcul. Plusieurs algorithmes

sont déployés pour le temps réel et testés sur des signaux monophoniques et des

enregistrements complexes. L’analyse spectrale peut-être utilisée pour annoter les

segments temporels; l’estimation de descriptions plus haut-niveau est approchée.

Des techniques pour modeler des notes et localiser le tempo sont approchées.

Les applications de cet environnement comprennent les installations musicales

interactives et plus généralement des outils pour le compositeur et l’ingénieur du

son. L’optimisation des vitesses de calcul peut apporter un bénéfice important à

plusieurs tâches automatisées, telles la classification automatique et les systèmes

de recommandation. Nous décrivons la conception de notre solution logicielle, pour

nos besoins de recherche et en vue de son intégration au sein d’autres systèmes.





A la musique qui fait battre mon cœur.
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Introduction

Developing robust methods for the annotation of music signal is required by new

applications of computer music. We are interested in studying different techniques

to analyse music signals in a real time fashion and with minimal delays. We propose

modifications of existing techniques for their implementation in real-time, and we

evaluate these techniques. The aim of our research is to investigate solutions to de-

rive simple symbolic notations from complex audio signals within very short delays.

We focus on rapid signal processing and Music Information Retrieval techniques

to extract four musically relevant audio descriptors: onset times, pitch, beats and

notes. An implementation is proposed as a collection of C routines, and method-

ologies for the evaluation and optimisation of the different algorithm are described.

The framework we used to evaluate automatically extracted features against hand-

annotated results is proposed as a collection of Python scripts. The results of our

experiments measuring the robustness of each algorithm are discussed.

An introduction is presented in Chapter 1, where some of the characteristics of

the human auditory system are recalled, and different approaches to the analysis of

digital music signals are reviewed. Chapter 2 explains the task of segmenting music

signals at the boundaries consecutive sounds, and gives a review of several methods

to obtain onset times, the beginning of sound events. Several methods are evaluated

and modified to allow the extraction of onset times within short latencies. These

methods are implemented and evaluated against a database of manually annotated

audio signals. The estimation of the fundamental frequency of music signals is

addressed in Chapter 3, where we give a definition of the pitch, the perceptual

attribute associated with frequency, before describing several methods designed to

extract the fundamental frequency. These methods are evaluated on different types

of music signals, and their computational cost are compared. Chapter 4 gives

an overview of several methods to extract the tempo from musical audio, and a

causal approach to beat tracking is described in details. Results obtained with this
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method on a corpus of manually annotated music signals are compared to the results

achieved by other approaches. In Chapter 5 we review different approaches to the

transcription of music signals in notes, and we evaluate the performance of different

methods to model these symbolic notations within a short delay. Several software

environments for the manipulation of musical signals are reviewed in Chapter 6,

and we describe the approach we have followed to implement our software solution,

the aubio library. Several examples of integrations of aubio with other softwares

are described. Chapter 7 gives an outline of the main findings described in this

document and pointers to further research directions.



Chapter 1

Background

New hardware and software enable new forms of interaction with sound. Both com-

posers and listeners can experiment with new relations to sound objects and music.

The use of symbolic notations in music composition and production environments

has been growing over the past decades. Meanwhile, several research areas of the

music community are driven towards the extraction of semantic meaning from a mu-

sical stream. However, little has been done to link the extraction of this semantic

information to its applications in composition and recording.

Here we focus on the applications of music information retrieval techniques

in the context of real time environments, such as digital audio workstations and

live computer music installations. Live effects or audio editing environments imply

strong constraints on the choice and implementation of algorithms. The calculation

time should be kept minimal, and the algorithm would preferably be causal or have

the smallest possible delay.

In Section 1.1 of this introductory part, we review some of the main character-

istics of the human auditory perception. These characteristics influence the way we

hear, listen to and create music, and are therefore important to consider in the de-

sign of listening systems. Section 1.2 gives an overview of some major concepts and

techniques developed within the music research community, along with some ex-

amples of interactive applications developed around these techniques. Our research

objectives are described in Section 1.3, where the organisation of the following

chapters in this document is detailed.

19



Chapter 1. Background 20

1.1 Perception and psychoacoustics

The human auditory system is composed of three main parts: the outer ear, which

collects and focus sound waves up to the timpani; the middle ear, where three tiny

bones, the ossicles, amplify the vibrations of the ear drum and transmit them to

the vestibulum; the inner ear, where a specific organ, the cochlea, contains specific

nerve cells for the analysis of audio stimulus. These cells are organised along the

basilar membrane, which is found inside the coiled, tapered conduit of the cochlea,

and fire patterns down the auditory nerve, further up into the brain.

The human ear is an extremely precise analysis engine, capable of distinguishing

very small variations in intensity, able to differentiate very slight changes in fre-

quency, and to separate events within a very short time lag. In order to analyse

audio signals in a musically meaningful way, understanding some of the human lis-

tening mechanisms is important. These mechanisms of human hearing are indeed

complex, and to some extent, music is tailored for the ears of the human listener

[Roads, 1996]. For modern text-books on psychoacoustics, the study of the subjec-

tive human perception of sound, see [Bregman, 1990, Deutsch, 1982, McAdams,

1987, Zwicker and Fastl, 1990]. An overview of some of the of major investigations

on auditory perception and psychoacoustics was given in [Roads, 1996, Chapter 7].

1.1.1 Perception of intensity

The physical intensity of an audio signal is defined by the energy carried by the

acoustic wave. Sound intensity is measured in terms of sound pressure level (SPL)

on a logarithmic scale and normalised to the atmospheric pressure P0:

SPL = 20 log10(P/P0). (1.1)

The perceptual attribute corresponding to the intensity is the loudness, and its

relation to measured intensity is not trivial. The human listener is capable of dif-

ferentiating small changes in intensity, but the perception of loudness also depends

on the spectrum of the signal, its duration, the presence of background noise and

other physical properties of the signal. A useful measure of loudness, the phon, was

defined in [Fletcher and Munson, 1933]. By definition, at a frequency of 1000 Hz,

one phon is equal to the SPL value in decibels. Throughout the rest of the spec-

trum, the loudness in phon corresponds to the actual loudness perceived by the

listener rather than the intensity of the signal. The curves shown in Figure 1.1

are the contour of constant loudness across the frequency range and for different
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Figure 1.1: Fletcher-Munson Equal Loudness Contours, showing the perceived loud-
ness as a function of the frequency and intensity of the stimulus. After [Fletcher
and Munson, 1933, Ropshkow, 2005]

intensities. At an intensity of 110 dB (SPL), frequencies of 100 Hz, 1 kHz and

10 kHz are roughly perceived at the same loudness. However, at 40 dB, a frequency

of 100 Hz would be just audible, and a frequency of 10 kHz would require a 10 dB

boost to be perceived at the same loudness than a 1 kHz sound. The dependency

between frequency and perceived loudness are important to design a system for the

extraction of perceptual features from music signal. In the next chapters, we will

use perceptually motivated filters to model these relations.

1.1.2 Perception of temporal features

Perceptions of frequency and temporal features are strongly related, and often can-

not be separated into two distinct processes. There is however strong evidence that

various types of temporal analysis occur within the inner ear and further in the

brain of the listener [McAdams, 1987, Zwicker and Fastl, 1990, Bregman, 1990].

Amongst these mechanisms is a period detector: the nerve cells of the inner ear
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fire periodic patterns at the same rate as the waveform. When the period is short,

the cells do not have enough time to recover and fire again within this period. In

this case the cells fire patterns at a multiple of the period. Frequencies that can

be detected in this way are up to about 4 kHz. Another mechanism allows us to

detect amplitude modulations at frequencies between 75 and 500 Hz.

Another type of temporal encoding operated by the human ear allows for the

analysis of sonic events: some of the nerve cells are triggered at onset and offset

times, where a sound starts and finishes [Whitfield, 1983]. The attack of the note,

where the sound starts rising, triggers these nerve cells, while the sustained part

of the sound, where the note is held, does not. A detailed analysis of this phe-

nomenon was given in a study of the perceptual attack time [Gordon, 1984]. The

study included perceptual tests in which listeners were asked, while listening to two

different sounds separated by different time delays, to press a button if the attacks

of both sounds were perceived as simultaneous. Gordon could measure accurately

the perceptual attack times and found that these times were consistently different

amongst different listeners. The tests showed that perceptual attack times of tones

could be perceived significantly later than the physical onset of the sound in the

music signal, up to a few tens of milliseconds, depending on the instrument played

and the way it is played. Gordon [1984] observed that the perceptual attack time

of several sounds was dependent on the timbre of the instrument, this quality of a

sound which enables us to distinguish one instrument from another [Grey, 1975].

In Chapter 2, we will look at ways to detect physical onset and offset times for

different timbres.

As auditory nerve cells need to rest after firing, several phenomena may occur

within the inner ear. Depending on the nature of the sources, two or more events

will be merged into one sensation. In some cases, events will need to be separated

by only a few millisecond to be perceived as two distinct events, while some other

sounds will be merged if they occur within 50 ms, and sometimes even longer. These

effects, known as the psychoacoustic masking effects, are complex, and depend not

only of the loudness of both sources, masker and maskee, but also on their frequency

and timbre [Zwicker and Fastl, 1990]. The different masking effects can be divided in

three kinds [Bregman, 1990]. Pre-masking occurs when a masked event is followed

immediately by a louder event. Post-masking instead occurs when a loud event is

followed by a quiet noise. In both case, the quiet event will not be perceived –

i.e. it will be masked. The third kind of masking effect is simultaneous masking,

also referred to as frequency masking, as it is strongly dependent on the spectrum

of both the masker and the maskee. Under certain circumstances, a quiet event,
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Figure 1.2: Schematic representation of the three types of psychoacoustic maskings.
A masker event (blue) may mask another one, the maskee (red), in three ways: a.
pre-masking: the maskee is followed by a louder event; b. post-masking: the maskee
is preceded by a louder event. c. frequency masking: the maskee is masked by a
louder event. After experimental results of Zwicker and Fastl [1990].

occurring while the masker event is being played, will not be heard. A representation

of the three main types of maskings is shown in Figure 1.2, with typical delays of

about 50 ms for pre-masking and about 150 ms for post-masking. Establishing

simple rules to model masking effects is not trivial, but realistic models are now

used as the foundation of modern lossy coders, such as the well-known MPEG-1

Layer 3 (MP3) [Brandenburg and Bosi, 1997, Brandenburg, 1999] or more recently,

Ogg Vorbis [Xiph.org, 2005]. These perceptual “speed limits” will be considered in

Chapter 2 when designing a system for the extraction of temporal features such as

the attack time of a sound.

1.1.3 Perception of frequency

The human ear is capable of distinguishing frequencies ranging from 20 Hz to

20 kHz, as well as small variations in frequency. Different frequencies are perceived

at different regions of the basilar membrane of the human cochlea, and the distance

from the middle ear to the region in the basilar membrane directly depends on the

period of the audio waveform. These regions are referred to as the critical bands

of the human auditory system [Scharf, 1970], and play an important role in the

perception of harmony. Roeder and Hamel [1975] observed different perceptual
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Figure 1.3: Schematic representation of the perception of two sine tones at frequen-
cies F1 and F2 and played simultaneously. As the frequency difference dF = F1−F2

is reduced, the perception of both tones changes from two distinct frequencies to a
single fused tone. After [Roeder and Hamel, 1975]

effects when playing two pure tones of different frequencies. These effects are

diagrammed in Figure 1.3, where two tones of frequency F1 and F2 are played

simultaneously. The widths of the critical bands change across the spectrum, with

wider bands in the high frequencies (the scale of Figure 1.3 is arbitrary). When two

sine tones have very close frequencies, the ear perceives them as a single fused tone

corresponding to a frequency between those of the two tones. When the difference

between the frequencies of both tones is small, the fused tone is perceived with a

sensation of beating similar to an amplitude modulation. When the frequencies of

both sine tones moves further apart, a sensation of dissonance is perceived – the

term roughness is often preferred in the psychoacoustic literature. Finally when the

frequencies of the two tones are found in different critical bands, both tones be

identified as two distinct sources.

Frequency discrimination of the human auditory system is not limited by the

width of the critical bands. The perception of pitch, the perceptual attribute of the

frequency, is not directly related to the frequency of the signal. Indeed temporal



1.2. Automatic annotation 25

encoding also plays a role in the way we perceive frequencies. The sensation of pitch

is limited to a shorter range, and the perception of octave differences are for instance

limited to a 60 Hz – 5 kHz range [Schubert, 1979]. When many frequencies are

played together, the auditory system integrates the information from all the critical

bands to decide the pitch of the source. The harmonic relationship between the

partials of the source produce this sensation, but some inharmonic timbres, including

noise, can also be perceived with a clear sensation of pitch. These perceptual cues

participate in forming the sensation of timbre.

1.1.4 Cognition

The influence of neural activity and the acquired experience of the listener on the

listening process is complex and not very well known. A trained human ear is able

to analyse a complex signal into its different sources, identify each of these sources,

and mentally follow them individually. The music itself is often tailored for the

listener.

One important process occurring within the brain is the integration of neural

signals coming from both ears, which permits the localisation of the source in space

[Zwicker and Fastl, 1990]. Another example is that of the presence of echo in an

auditory scene, which will be perceived as the reverberation of the main source from

the walls of the room, rather than as a stream of events occurring within short delays.

While the listener will not always be able to distinguish each of the reverberations,

the sensation of echo will be clearly perceived. Another mechanisms of the human

auditory system enables us to separate two different sources of repeated events with

different rhythms into two or more distinct auditory streams [Bregman, 1990].

A trained ear will have the ability to mentally segregate the signals coming from

different simultaneous sources. Specific abilities are developed by musicians, which

enable them for instance to play their instrument while listening to another one.

Finally, the cultural knowledge of the listener will also influence his perception of

music.

1.2 Automatic annotation

Analog and digital systems have brought new means to study and understand au-

ditory perception, speech and music signals. Computer systems have opened the

way to digital media storage and faster computations. Complex systems for anal-

ysis and synthesis of audio signals and new composition tools have been designed.
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The historical background of research in computer music helps in understanding the

concepts of audio objects and symbolic representations.

1.2.1 Audio objects and semantic descriptors

In [Schaeffer, 1966], the approaches of both the composer and the listener to make

and listen to music are discussed. Schaeffer [1966] develops his view of sound in his

experiments on musique concrète, produced by editing together fragments of natural

and synthetic sounds, and approaches the notion of musical object, sounds perceived

as concrete entities and combined together when composing music. The properties

of audio objects, their interaction with the external world and with other sound

sources determine the way we perceive them. The notion of auditory scene analysis

was introduced in [Bregman, 1990], where the perception of an acoustic scene is

compared to the vision of an image. The different objects are first decomposed by

the determination of their contours, and further identified by their details. Audio

objects have different shapes in time and frequency. Real world sounds are known

or new objects; synthetic sounds can mimic real world objects, and create new ones.

Analysis and synthesis of music signals have seen a growing interest in recent

decades. As audio tapes opened ways to new musical applications and became pop-

ular, the mid-1960s brought new approaches and strategies to analyse and model

speech and music signals. In [Risset and Matthews, 1969, Risset, 1969], frequency

analysis of trumpet tones was performed using a computer. The system could

sample values for amplitude and frequency of multiple sinusoidal components. The

variations described by these measured values were approximated by linear segments,

which in turn could be used to control the frequency and amplitude of synthesised

sinusoids. By manipulating a small number of parameters describing the line seg-

ments, new sounds could be synthesised using this system, and identified by the

listener as resembling to that of a trumpet. Similar strategies were used to study the

nature of the timbres from different music instruments [Moorer and Grey, 1977b,a,

1978] and evaluate the perceptual relevance of synthesised tones [Grey and Moorer,

1977].

Analog vocoders were widely used for speech modellings in the 1960s, but the

development of the digital vocoder [Portnoff, 1976] was a milestone towards high

quality digital audio processing. Several major improvements were brought around

the phase vocoder, shown to be useful for analysis and synthesis of music signals

in [Moorer, 1978], including the efficient modelling of voice signals using sinusoidal

representations [McAulay and Quatieri, 1986] and the decomposition of the signal
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in terms of deterministic and stochastic components [Serra, 1989, Serra and Smith,

1990]. Even though other time-frequency representations and wavelet transforma-

tions are being explored, sinusoidal representations have played an important role

in the speech and music communities. With the increase of available processing

power and the optimisation of fast Fourier transform implementations, techniques

to synthesise and control several hundred sinusoids are now available on a stan-

dard desktop computer [Freed et al., 1993] allowing the analysis, generation and

modification of complex synthetic timbres.

Beyond the analysis of the spectral structure of sounds and timbres, the research

community has been interested in designing systems able to transcribe an acoustic

wave into notes, which define the boundaries of audio objects. Early work on music

transcription included a system to analyse a monophonic recorder or a symphonic

flute [Piszczalski and Galler, 1977] and a system to follow duets, i.e. two-voice

compositions [Moorer, 1977]. Segmentation of the audio signal into notes was done

by the detection of important changes, in terms of signal amplitude or fundamental

frequency frequency. In both systems, the user had to provide the smallest duration

as a parameter, and the boundaries of extracted notes were defined at multiples of

this smallest possible duration. The frequency of the flute partials were searched for

in the frequency domain, and the fundamental frequency selected as the partial with

the most energy. Noticing that the fundamental frequency was sometimes wrongly

selected, Piszczalski and Galler [1977] used a stronger weight for the partials at low

frequencies.

Further improvements to transcription systems were brought by the use of sep-

arate techniques to segment the objects at their boundary [Foster et al., 1982], and

better modelling of the note accents [Chafe et al., 1982]. The use of musicological

rules [Lerdahl and Jackendoff, 1983] has also been popular to infer the relations

between these objects. Extracting symbolic notations from acoustic signals consist

of drawing a series of rules to describe group of notes and infer metrical structure

of a musical piece. Specific strategies were deployed to tackle this task. Algorithms

for the recognition and grouping of spectral and temporal patterns have been devel-

oped [Mont-Reynaud and Goldstein, 1985]. An artificial intelligence technique, the

blackboard approach was described in [Chafe et al., 1985], using event detection

and metrical structure informations along the frequencies of the partials to infer

hypothesis. Another approach, the clustering of partials into a timbre classification,

was implemented in [Kashino and Tanaka, 1993] for source separation and tone

modelling, based on features such as harmonic mistuning and attack time.

While computer music applications were adopted amongst musicians and com-
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posers, a variety of complex synthesis and composition algorithms have been de-

signed and used by performers and composers [Roads, 1996]. The MIDI format

[MIDI Association, 1983], using symbolic data to describe the note attributes, has

become a standard control protocol and is widely used in recording studio and

computer systems [Loy, 1985]. Existing and new control interfaces can be built to

control dedicated synthesis modules in real time.

Several coding systems have been designed based on time frequency repre-

sentations, using psychoacoustic models [Brandenburg, 1999, Xiph.org, 2005], or

harmonic components plus noise decompositions [Purnhagen and Meine, 2000].

Modern specifications such as MPEG4 include standards such as Structured Audio

[Scheirer, 1998a, Scheirer and Vercoe, 1999], inherit from Csound, a pioneering

programming language for sound synthesis [Boulanger, 1998], and include the MIDI

standard. New systems are being designed for the transmission of musical signals

and symbols [Amatrian and Herrera, 2002].

The extraction of features from audio signals is used for a varied range of appli-

cations. Several research areas about analysis and synthesis of musical sounds aims

at reducing the amount of data to process by extracting semantic informations from

them to gain better control and create interactive systems.

1.2.2 Application fields

Advanced synthesis techniques for instrument modelling have been described, and

the control over the parameters of the models has open the way to new creative

applications. Realistic modelling of plucked strings [Karjalainen et al., 1993] and

stringed instruments [Smith, 1993] have been proposed.

Symbolic notation of music permitted the elaboration of automatic accompani-

ment systems based on symbolic representations [Dannenberg, 1985, Vercoe, 1985,

Dannenberg and Mont-Reynaud, 1987], sampling synthesis has allowed the elabo-

ration of more complex generative systems [Pachet, 2002]. Symbolic music repre-

sentation have also allowed the automation of symbolic pattern recognition [Huron,

1995]. Similarly score alignment and score following systems began with symbolic

data and are now mixing signal processing and musicological rules to [Raphael,

2001b, Orio and Déchelle, 2001].

The parameters of an audio effects can be controlled automatically in an adaptive

fashion [Verfaille, 2004]. Feature extraction of different signal characteristics start

being used for such audio effects, so that the sound source can be used as a control

over the effect algorithm.
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Onset and pitch annotation were shown to improve significantly sound processing

algorithms such as time scaling [Ravelli et al., 2005], by preserving the perceptual

characteristics of the attacks. New interfaces are being created for the realignment

of drum loops by which a sound object can be displaced within a recorded texture

[Aucouturier and Pachet, 2005]. Fine grained modification of existing melodies

requires the annotation of both pitches and onset times [Gómez et al., 2003b].

Recent sampling synthesis systems make use of database of sound segments,

annotated with pitch and texture attributes [Casey, 1994]. File format specifically

dedicated to these banks of sounds permit the creation, storage, exchange and

modification of these samples. Sampling synthesis can be used in various creative

ways to create new sound instruments based on automatically segmented audio

[Aucouturier et al., 2004].

Similarly, automatic classification of sound segments is employed in creative

applications like micro-montage to create new sound textures [Caires, 2004]. The

classifier clusters short time slices into texture categories, that can be concatenated

and controlled by an amplitude envelope. Music mosaicing [Zils and Pachet, 2001,

Casey, 2005] is another new application that picks from an annotated corpus of

audio data to mix and reuse existing samples. Other sampling synthesis based on

audio segmentation include [Jehan, 2004, Collins, 2004].

Music recommendation and genre classification systems have to take a small

number of decisions over a large corpus of music recordings, and thus process large

amounts of data in a limited time. Real time identification of music such has

recently becomes usable as results can be obtained within several tens of seconds

[Wang, 2003]. Some applications such as query by music specifically require the

extraction of semantic data [Pampalk et al., 2005, Tzanetakis, 2002]. Complex

systems are often based on a classification technique to cluster the elements of the

database. The classifiers most often include the extraction of signal features on

time segments. The speed is one of the most prominent requirement for search

engines.

1.2.3 Processing digital data

Only a few decades ago, most recording formats were analog. Although audio tapes

and vinyl records are still in use and being produced, important parts of our music

archives are now accessible on digital media, such as the popular compact disc.

When designing systems dealing with audio data, a number of pitfalls, specifically

encountered in processing digital signals, should be avoided. The precision of the



Chapter 1. Background 30

data itself and the time required to access and process this data are our specific

concerns.

Accessing large amounts of data requires some time, processing power and mem-

ory. Reducing these computation times will allow us to build responsive systems

that can take decisions within short time lags. Despite their large size, storage of

digital audio content is not our main concern: modern storage can access these

media in real time and faster. The issue is to deal with substantial amounts of data

in a way that is fast and efficient enough for a specific application. The speed and

efficiency required to achieve acceptable results will depend on the application.

Obviously, the characteristics of digital signals affect the difficulty of processing

them. Whether the recording is sampled at 8 or 192 kHz, onto 8 or 64 bits, the dy-

namics and spectral content of digital signals are limited by these specifications and

can only approach the resolution of the recorded acoustic vibrations. Quantisation

noise, harmonic distortion, floating-point computation errors and other artefacts of

digital systems need to be carefully considered in the design of a music annotation

system [Roads, 1996]. Available time and resolution limit the precision of analysis

algorithms, and various strategies must be deployed to preserve both physical and

perceptual attributes of music signal.

Another problem resides in the difficulty of constructing large databases of anno-

tated sounds. Gathering this data is often challenging, as large collections are often

held under copyright law and only accessible to recording and label companies. For-

tunately, recent years have seen the development of initiatives in this direction and

collaborations between different research teams, such as the Real World Computing

(RWC) music database [Goto, 2004] or the Music Information Retrieval Exchange

[MIREX, 2005a]. A strong movement in favour of Copyright Free multimedia con-

tents has also grown bigger in the past years. Large numbers of audio samples, song

extracts, or even multi-track master recordings are now available under Creative

Commons licenses or similar free licenses [Freesound, 2005, Mutopia project, 2000].

This forms important new material for the establishment of research databases and

the reproduction of results.

1.3 Summary

The characteristics of the human ear are complex and influence strongly our musical

activities, from composition to listening. The definition of semantic objects is useful

for many applications. From a signal processing point of view, the definition of a
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semantic concept is difficult for music signals, because the level of abstraction

required to englobe a majority of these concepts is on a much higher level than

that of the signal characteristics. Moreover, processing digital signals requires the

development of specific strategies to avoid various pitfalls and artefacts inherent to

digital systems. Annotating musical audio signals precisely consists in reducing the

size of raw audio signals to a few semantically and musically meaningful statements.

Modern applications of these sound processing techniques are now emerging and

evolve toward semantic descriptions of music contents. Much research has been de-

voted to automate the annotation of musical signals into audio objects and musical

semantics. The formalisation of this annotation task includes the design of the al-

gorithm, the implementation of the system and the evaluation of its characteristics.





Chapter 2

Temporal segmentation

Temporal segmentation of an audio stream into shorter elements is a fundamental

step in the transformation of sounds into semantic objects. Much research has been

devoted to this operation, and in the last two decades, different algorithms have

been developed to automatically separate music signals at the boundaries of audio

objects: where the note starts – the onset – and finishes – the offset [Moelants

and Rampazzo, 1997, Klapuri, 1999b]. The extraction of onset times is useful in

sound processing applications for accurate modelling of sound attacks [Masri, 1996,

Jaillet and Rodet, 2001], helps transcription systems in localising the beginning of

notes [Bello, 2003, Klapuri, 2004], and can be used in sound software editors to

break sound files in logical parts [Smith, 1996]. Onset detection methods have

been used for music classification [Gouyon and Dixon, 2004] and characterisation

of rhythmic patterns [Dixon et al., 2004]. Several systems for tempo tracking make

use of detected onsets to infer the location of beats [Scheirer, 1998b, Davies and

Plumbley, 2004]. A system capable of detecting these onset times as they occur,

just like the human listener does, enables new interactions between acoustic and

synthetic instruments [Puckette et al., 1998]. The establishment of robust methods

for the real time detection of onsets is thus an important task for the elaboration

of music installations and interactive systems.

The difficulty of constructing a single detection method that can label all relevant

observations is explained in the first section of this chapter. A number of approaches

for the detection of onsets in musical audio are described in a second part, from

temporal techniques to filter-bank and statistical methods. These approaches can

generally be separated in two tasks: the construction of a detection function to

characterise the changes in the signal, and the peak-picking of this function, to

33
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extract perceptually relevant onset times [Bello et al., 2005]. We will see that with

real time requirements, the peak-picking process, where the selection of relevant

changes occurs, needs to be specifically addressed. Indeed we aim at minimising

the delay and achieve temporal precision, two constraints required to approach

the responsiveness of the human ear. A method for the low-latency peak-picking of

onset times is proposed and the system is implemented as a collection of C routines.

Because perception of onsets is a subjective process of the human auditory

system, the evaluation of onset detection methods is a complex task. A framework

to compare extracted onset times to hand-labelled annotations is described and

tested over different detection methods. Localisation and precision of the extracted

onset times are evaluated against manual annotations, and the computational costs

of the different methods in our implementation are estimated.

2.1 Labelling musical changes

Moelants and Rampazzo [1997] describe a perceptual onset in a musical signal as

the “perceived beginning of a discrete event, determined by a noticeable increase in

intensity, or by a sudden change in pitch or in timbre.” The term onset detection

refers here to the detection of the beginnings of discrete events in acoustic signals

[Klapuri, 1999b]. Two examples of sounds presenting perceptual onsets are shown

in Figure 2.1. The drum sound on the left of Figure 2.1 is produced by a snare

drum and starts after about 10 ms, as can be seen in the waveform with a sudden

amplitude increase, and in the spectrogram with an increase of energy in all the

bands of the spectrum. Percussive sounds such as drums or struck strings will often

form sharp attacks, presenting a sudden increase of energy in their waveform and a

broadband burst in their spectrum. We will refer to these broadband energy bursts

as percussive onsets. A second onset, less loud than the first one, can be perceived

in the percussive sound of Figure 2.1, after about 270 ms. Although less apparent

than for the first event, this second event also presents a broadband increase of

energy.

Other instrument timbres, such as voice or string instruments, present smooth

transitions from one note to the other, and characterising these changes is subtle.

The waveform of the viola recording in Figure 2.1 shows the transition between two

notes with different pitches. This viola sound is perceived as a clear change from

one pitch to another, with no noticeable change in loudness or timbre. These non-

percussive onsets will be referred to as tonal onsets. The characterisation of onsets
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Figure 2.1: Examples of sounds creating the perception of onsets. Left column:
snare drum hit at 10 ms and rimshot at 270 ms. Right column: two consecutive
notes played legato on a viola; transition after about 80 ms. The waveform and
spectrogram of each sound are plotted in top and bottom raw.

in polyphonic audio recordings is not trivial, since they can be defined by changes

in loudness, pitch and timbre. The energy of the signal may be modulated by the

presence of tremolo, and the frequency may be modulated with vibrato. These

gradual changes are perceived as variations in amplitude or frequency, but not as

discrete events.

With polyphonic signals, when different sound sources play simultaneously, the

notion of attack time becomes less precise, as the attacks of simultaneous sound

sources mix together. Observing sound events to define their temporal boundaries

is a complex task because their nature changes not only from sound to sound –

burst of energy across the spectrum for percussive sounds, or large variation of the

harmonic content for tonal or voiced sounds – but also when different sounds occur

together.

Gordon [1984] showed that perceived attack time was dependent on both tim-
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bre and loudness, and could be delayed from several tens of milliseconds by the

actual note onset in the waveform. Recent psychoacoustic studies have shown that

the perception of attack time is dependent of frequency [Moore, 1997]. The con-

text in which a sound takes place will also change the way we perceive its attack.

Fusion of simultaneous events may occur according to loudness and timbre, and

two sound events played within 20 to 50 ms are usually perceived as synchronous

[Bregman, 1990]. With repetitive temporal patterns separated by less than 80 ms,

a sensation of streaming is perceived: the consecutive events are merged together;

events separated by more than 100 ms can usually be identified by a human listener,

who is then able to count several consecutive events [London, 2002]. Experimental

measurements have confirmed that a time of 90 to 100 ms also corresponds to the

limits of virtuosity for the production of notes [Repp, 1993, Friberg and Sundström,

2002] and for very short events to be perceived as distinct notes [Sundberg et al.,

2003]. The minimum interval between two consecutive onsets is thus dependent on

the context in which these onsets occur. As we are interested in detecting musically

and perceptually relevant onset times, manual annotations are required to obtain

these relevant onset times. A database of manually annotated sounds will be used

in Section 2.5 to evaluate the performance of several onset detection methods.

Slicing an audio recording is a task known to recording engineers and computer

musicians, for example when they select segments of recordings for sampling syn-

thesis [Roads, 1996]. Compositional methods have been developed around sound

samples and useful representations of music signal have been constructed using

onsets and offsets sequences [Smith, 1996]. This slicing operation may require a

higher temporal precision than that achieved by the listeners of the experiments

of Gordon [1984]. For instance, sampling synthesis techniques use zero-slicing for

the selection of the attack time [Roads, 1996]. Slicing was originally performed by

hand, initially on dedicated tape machines [Schaeffer, 1966], later using a comput-

erised waveform display and time frequency representations to help the selection of

precise locations [Leveau et al., 2004]. For applications such as audio collage and

resampling, the sample will be sliced preferentially at the beginning of a note, with

the attacks of each object correctly preserved so that slices are perceptually relevant

when played in isolation. The drum sound plotted in Figure 2.1 was intentionally

sliced 10 ms earlier than its optimal slice point to display the sharp attack. When

consecutive events overlap in time, attempts to minimise “leakage” from the previ-

ous segment into the current attack are also considered when determining the best

slicing location [Roads, 1996].

We have seen that perceived attack time varies against timbre, frequency and
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loudness, and that two consecutive events are generally perceived as distinct when

their attack time is separated by more than 50 ms. This suggests that describing

musical changes using discrete time events implies observing the temporal features

of the audio signal at a lower sampling rate than that of the audio signal. However,

applications such as sampling synthesis may require a precision down to the sample

to produce perceptually relevant slices.

2.2 Perceptual models for temporal segmentation

A first step in the extraction of discrete onset times is the evaluation of the amount

of variation found in the signal. For a given time frame, a measure based on the

characteristics of the audio signal is computed. Consecutive observations of this

measure are gathered to form an onset detection function [Klapuri, 1999b, Bello

et al., 2005]. The task of this onset detection function is to provide a mid-level

representation: a function at a lower sampling rate than the low-level of the audio

signal, reflecting the temporal features of the recording in order to obtain the high-

level onset locations. These onset detection functions should present sharp peaks

at onset times and no peaks during sustained notes and background noise. In a

second step, peaks in this function will be selected to extract relevant onset times.

The functions can be built using one of three methods: directly on the waveform

in the temporal domain, in the spectral domain using several frequency bands or

a phase vocoder, or using machine learning techniques on different features of the

signal.

Before the construction of a detection function, some preparation can be per-

formed to accentuate or attenuate various aspects of signal. These pre-processing

steps depend on the requirements of the system, and may include the normalisation

of the energy to minimise loudness changes across a collection, as well as algorithms

to remove clicks and reduce the level of noise in the recordings.

As percussive sounds present important bursts of energy at the beginning of each

event, an intuitive attempt to detect percussive events is to measure the energy of

the signal to detect these bursts. Schloss [1985] used the energy contour of the

waveform to find the attacks of percussive sounds, with an energy envelope follower

be written as follows:

DH [n] =
N/2∑

m=−N/2

w[m]x[n + m]2, (2.1)
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where w[m] is a smoothing window to evaluate the average energy over the window

of width N . This approach can be successful at detecting sharp attacks of percussive

sounds, which present abrupt energy variations, but fails at detecting several timbre

and frequency changes, as we will see in Section 2.5.

To reflect changes in the spectral structure of the signal, a number of detec-

tion functions have been proposed based on a time-frequency representation, a view

of the signal represented over both time and frequency. Time-frequency repere-

sentations can be obtained using either several frequency bands [Scheirer, 1998b,

Klapuri, 1999b, Puckette et al., 1998], either short-time Fourier transforms [Masri,

1996, Foote and Uchihashi, 2001, Bello et al., 2003, Hainsworth and Macleod,

2003, Duxbury et al., 2003]. Multi band and Fourier transform methods rely on

the notion of transients – transitional zones of short duration characterised by the

non-stationarity of the signal spectral content – to model musical changes. These

approaches were recently reviewed in a tutorial article [Bello et al., 2005]. To de-

scribe temporal features at different frequencies, Scheirer [1998b] used six frequency

bands to analyse transients across different frequency regions, obtaining a function

preserving the temporal features of the sound by combining the results of each

band. A real-time implementation of a multi-band onset detector was described

in [Puckette et al., 1998], where the logarithmic distance between two consecutive

frames was measured in eleven bands.

Using 21 bands, Klapuri [1999b] constructed a detection function by summing

over the bands using psychoacoustically motivated energy weightings. He also noted

that the logarithmic derivative of the energy produces sharper peaks, closer to the

attack time, linking his observation to that of Moore [1997], who suggests that

the smallest perceivable variation in intensity is proportional to the intensity of the

signal: the auditory system perceives relative intensity changes, rather than absolute

intensity levels. Klapuri’s results showed that robust detection can be achieved

on percussive onset and polyphonic recordings, but failed on some tonal onsets

of a symphony orchestra, and could produce false detection on strong amplitude

modulations. Several methods based on spectral frames of the signal have since

been proposed, either to address specifically tonal onsets [Bello et al., 2003] or to

handle various timbres [Duxbury et al., 2003]. These approaches have been shown

to be successful on a variety of signals [Bello et al., 2005]. They are suitable for

real time implementation since time-frequency representations can be computed

efficiently using Fourier transforms. Several of these methods are reviewed in the

next section.

Other signal models have been proposed for the reduction of musical audio to
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a description of its rhythmic content, including machine learning techniques such

as Markov chains [Punskaya et al., 2002] and Support Vector Machines (SVM)

[Kapanci and Pfeffer, 2004]. Markov chains use probability models to estimate the

likelihood of a transition from one state of the chain to another. They are useful

for music signals as they can model model both continuity and abrupt changes

[Rabiner, 1989]. The method described in [Punskaya et al., 2002] directly uses

the amplitudes of the samples as the state of the model, and was shown to be

efficient at detecting abrupt changes in synthetic and speech signals. Because this

model works at the sample level, it can be used for denoising applications and click

removal. Markov chains can predict future states given a set of past observations,

and this method could also be applied to the restoration of old recordings, to fill

gaps found in damaged records. However the system does not scale for an efficient

detection of onset times, as several thousands of iterations are needed to obtain the

position of changes.

A successful approach specifically designed for the detection of perceptual onsets

was described in [Abdallah and Plumbley, 2003], where the signal is represented us-

ing Independent Component Analysis (ICA). From the set of Gaussian distributions

describing a current frame of the signal, a function to measure the surprisingness

of this frame is built as the likelihood of this frame to occur given a series of past

events. This technique allows for the modelling of the probability of different sound

objects and the training of these probabilities to model specific sound events. For

the segmentation of audio with tonal events presenting soft transitions, Kapanci and

Pfeffer [2004] adopt a different approach: rather than searching for precise change

points, they evaluate whether two frames separated by a certain temporal distance

could be produced by the same sound event. Each time frame is described by a vec-

tor of signal features: amplitude, fundamental frequency and relative weights of the

first three harmonics. An SVM is used to identify groups of frames corresponding to

the same sonic event. After training, the system was shown to be able to correctly

segment a corpus of solo singing recordings. However the system is computation-

ally intensive, since the detection of each onset depends on the analysis of past and

future frames, and hence not easily applicable to real time implementations. The

SVM has also been employed for the recognition of repetitive shapes in percussive

signals and differentiate different drum instruments [Tindale et al., 2004]. Systems

capable of learning specific patterns of the attack open the way to promising appli-

cations, as they could be used for the recognition of different timbres. However, real

time implementation of these methods is difficult as these algorithms are complex

and often computationally intensive.
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2.3 Phase-vocoder onset detection functions

A phase vocoder is used to obtain a time-frequency representation of the signal. The

phase vocoder and its use for musical signals have been described in details in the

literature [Portnoff, 1976, Moorer, 1978, Dolson, 2001, de Götzen et al., 2000]. The

notations we use throughout this document are as follows: for a signal x at time n,

we define X[n] as its Short Time Fourier Transform (STFT). Xk[n], the value of the

complex spectral component in the kth bin at n, can be expressed in its polar form

as |Xk[n]|ejφk[n] where |Xk[n]| is the bin’s spectral magnitude, and φk[n] its phase.

Typical window size used for each the phase vocoder is 1024 or 512 samples, with

an overlap rate of 50% or 75%, so that the window slides of 512 or 256 samples

between each analysis frame. At 44100 Hz, a hop size of 512 samples give a

temporal quantisation of 5.6 ms, which is a reasonable resolution to distinguish

onsets separated by a few tens of milliseconds.

High Frequency Content

To favour the selection of wide-band burst of energy over other energy changes such

as amplitude modulation, a stronger weight can be given to the high frequency

components of the spectrum. Masri [1996] proposed a High Frequency Content

(HFC) function, constructed by summing the linearly-weighted values of the spectral

magnitudes:

DH [n] =
N∑

k=1

k|Xk[n]|2 (2.2)

where Xk[n] is the kth bin of the STFT taken at time n. This operation emphasises

energy changes occuring in the higher part of the spectrum, especially the burst-like

broadband noise, usually associated with percussive onsets. However, the function is

less successful at identifying non-percussive onsets – legato phrases, bowed strings,

flute – which do not present such wide-band bursts.

Spectral difference

Harmonic components sliding from one fundamental frequency to the other may be

missed by the energy and HFC detection functions, for instance when only small

energy changes are observed. Other methods attempt to compensate for the short-

comings of the HFC by also measuring the changes on the harmonic content of the

signal. One of such methods, known as the spectral difference [Foote and Uchi-
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hashi, 2001], calculates a detection function based on the difference between the

spectral magnitudes of two successive STFT frames:

Ds[n] =
N∑

k=0

∣∣∣ |Xk[n]|2 − |Xk[n− 1]|2
∣∣∣. (2.3)

This function attempts to quantify the amount of change found from one frame

to another, rather than frame-by-frame measurements implemented by both the

energy and HFC functions.

Phase deviation

Alternatively, a different approach [Bello et al., 2003] consists in building a function

that measures the temporal instability of the phase. Tonal onsets will be identified

by important phase variations. The energy burst found in percussive onsets also

present such phase variations.

A steady state signal is expected to have the phase constantly turning around

the unit circle. The phase delay, its angular speed, can thus be assumed to be

constant, and its acceleration null. Phase changes can thus be detected looking at

the phase acceleration. The function can be constructed by quantifying the phase

deviation in each bin as:

φ̂k[n] = princarg

(
∂2φk[n]

∂n2

)
, (2.4)

where princarg maps the phase to the [−π, π] range. A useful onset detection

function is generated as:

Dφ[n] =
N∑

k=0

|φ̂k[n]|. (2.5)

A drawback of this function is that important phase changes may also occur at

places not related to a musical change: noisy components of the signal will usually

present an unstable phase. Although this may not affect tonal events with strong

harmonic components, large variations may occur as as the signal becomes more

percussive and noisy.

Complex-domain distance

In order to quantify both percussive and tonal onsets, the spectral difference and

phase based approaches can be combined in the complex domain [Duxbury et al.,
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2003] to generate a prediction for the current spectral frame, X̂k[n] = |Xk[n]|ejφ̂k[n],

where φ̂k is the phase deviation function defined in Eq. 2.4. Then by measuring the

complex-domain distance between target and observed STFT we obtain:

DC [n] =
N∑

k=0

∥∥∥X̂k[n]−Xk[n]
∥∥∥2

. (2.6)

This measure, similar to a Euclidean distance but in the complex domain, evaluates

the distance between the current frame and the frame predicted from the previous

one assuming both the phase shifting and the amplitude are constant.

Kullback-Liebler distance

Further alternative measures can be used to evaluate the distance between two

consecutive spectral vectors. As we are looking at highlighting increase of energy,

while ignoring decreases, the Kullback-Liebler distance can be used to highlight the

large variations and inhibit small ones:

Dkl[n] =
N∑

k=0

|Xk[n]| log
|Xk[n]|

|Xk[n− 1]|
. (2.7)

This function accentuates positive amplitude changes: large peaks will be raised

when the signal goes from silence to an event, as the denominator will be much

smaller than the numerator. A variation of this function is proposed in [Hainsworth

and Macleod, 2003], which removes the |Xk[n]| weighting, accentuating the ampli-

tude changes in the function:

Dmkl[n] =
N∑

k=0

log
|Xk[n]|

|Xk[n− 1]|
. (2.8)

To prevent the function from reaching negative values, which would increase the

complexity of the peak-picking, and to ensure the function is defined even when a

series of small values is encountered, we can further modify the function as follow:

D′
kl[n] =

N∑
k=0

log
(

1 +
|Xk[n]|

|Xk[n− 1]|+ ε

)
, (2.9)

where ε is a small constant, typically ε = 10−6. This constant is designed to avoid

large variations when very low energy levels are encountered, and thus prevents large



2.3. Phase-vocoder onset detection functions 43

 0  2  4  6  8  10
-1

 0

 1

am
pl

itu
de

time (s)

misterio_loop.wav

42988

0

hf
c

750

0co
m

pl
ex

196

0sp
ec

di
ff

103

0

ph
as

e

 0  2  4  6  8  10

744

0

m
kl

time (s)

Figure 2.2: Examples of onset detection function profiles: HFC (hfc), Complex
domain (complex), spectral difference (specdiff), Phase (phase), Modified Kullback-
Liebler (mkl). Sound sample: Misterio, Azymuth

peaks in the detection function D′
kl[n] at offset times.

Examples of onset detection function profiles

In Figure 2.2 and Figure 2.3, examples of onset detection profiles obtained for two

polyphonic recordings are shown. See Appendix B for availability of the record-

ings. The first example (Figure 2.2) is an excerpt of a Brazilian song by Azymuth,

containing a brass ensemble and drums. The rhythmic structure of the excerpt

appears clearly defined in the profile of each functions, with peaks sharper or less

sharp depending on the function. The brass notes tend to create some small vari-

ations in the spectral difference, the phase based approach and to a lesser extent,

the complex-domain method. These variations create spurious peaks that the peak

selection should carefully avoid in favour of the selection of the main peaks. The

modified Kullback Liebler function, defined in Eq. 2.9, creates sharp spikes at per-

cussive onsets; in this example, the Kullback Liebler function will give correct results

for all onsets in the file.
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Figure 2.3: Examples of onset detection function profiles: HFC (hfc), Complex
domain (complex), spectral difference (specdiff), Phase (phase), Modified Kullback-
Liebler (mkl). Sound sample: First measures of the 5th Symphony, Beethoven

The second example in Figure 2.3 shows the first measures of Beethoven 5th

Symphony. The violins start playing 8 notes forte from 0 to 6 s then continue their

phrase piano, from 6 to 14 s, before the timpanist starts playing, from 14 s to the end

of the file. The profile of the HFC allows the larger peaks to be clearly distinguished.

However, peaks on notes with low energy have a very small magnitude. These

magnitude differences tend to make the thresholding and peak picking operations

difficult. The Kullback Liebler approach appears not as successful in detecting tonal

onsets with weak transient components. The profile of the phase-based detection

function is the only one containing all the peaks corresponding to the actual note

onsets, and despite the presence of noise, this function will give best results after the

selection of the relevant maxima. The differences between the profiles obtained for

the two recordings and the presence of large amplitude changes within each example

illustrate the difficulty of determining the best algorithm to select all relevant peaks

in the onset detection functions.
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2.4 Temporal peak picking of note onsets

The final selection of the onset locations consists in identifying local maxima in

the detection functions that correspond to perceptual onsets. Depending on the

signal content, peaks present in the detection function will be sharper or less sharp

and may be masked by noise, either due to actual noise in the music signals or to

other aspects in the signal, such as vibrato and amplitude modulation. Intuitively,

the characterisation of onset times in the detection function is reduced to a peak-

picking operation: the selection of local maxima above a given threshold value.

Effective temporal peak-picking methods are required for the robust identification

of onset times in the detection function. Rather than selecting local maxima, Puck-

ette et al. [1998] proposed to select onset times when abrupt amplitude increases

occur in the detection function, as implemented in the bonk~ object for PureData

(Section 6.1.2).

This implementation was informally tested – see Appendix B for examples of

results – and found to detect accurately percussive onsets within short delays. How-

ever, several lower energy onsets are discarded on polyphonic recordings, and most

tonal events are missed. Detecting these increases is efficient on sharp attacks,

but fails on long attacks where the growth of the detection function is too slow.

Alternative approaches for the selection of onset times have been proposed, with

for instance the use of machine learning techniques to identify some characteristic

shapes in the detection function is described in [Abdallah and Plumbley, 2003, Tin-

dale et al., 2004]. Because of their complexity and their high computational cost,

these approaches are difficult to implement in real time. Off-line implementations

of the peak-picking process have been shown to perform a robust selection of the

peaks on a variety of detection functions [Bello et al., 2005]. We review here some

of these approaches to the peak-picking of onset detection function, and investigate

their implementation in a real time context.

2.4.1 Post-processing

Some preparation can be done to limit the number of spurious peaks in the detec-

tion functions before searching for local maxima. Typical post-processing operations

applied on the detection functions include low-pass filtering, DC-removal, and nor-

malisation [Bello et al., 2005]. Low-pass filtering of the detection function aims at

reducing the noisiness of the signal and minimise the spurious detections. The filter
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can be implemented efficiently and causally using a FIR filter:

D̃[n] = D[n] +
M∑

m=1

amD[n−m]. (2.10)

This operation reduces the number of spurious peaks in the function with a min-

imal additional cost. Low-pass filtering is therefore well adapted for a real-time

implementation. To avoid the delay implied by the low-pass filter, a window of the

detection function around the current frame is filtered in both directions, simulating

a zero-phase delay.

The DC-removal and normalisation stages bring the function into a fixed range,

typically between 0 and 1. These steps ensure the function has a given profile re-

gardless of the amplitude and nature of the sound, thus improving the success of the

thresholding operation across a collection of samples. Off-line, the normalisation

and DC-removal processes use information from a large time segment both before

and after the current frame, allowing the use of fixed parameters for thresholding.

In real-time, we can approximate this by using a long sliding window, which would

increase significantly the delay of the system. Therefore, DC-removal and normali-

sation are not suitable to be implemented using very short delays, and not adapted

for real time operations.

2.4.2 Dynamic thresholding

To obtain sequences of onsets, peaks in the post-processed detection function cor-

responding to actual onset times should be identified, yet avoiding spurious peaks.

Important amplitude variations can be observed in the detection functions, depend-

ing on the content of the signal, and in particular the loudness, as can be seen

in Figure 2.3 when the timpani enters after 14 s. To compensate for pronounced

amplitude changes in the function profile, dynamic thresholding is used: for each

observation in the detection function, a threshold is computed based on a small

number of past and future observations; the amplitude of the current observation

is then compared to this threshold. Methods to construct a dynamic threshold

include frame histogramming [Hainsworth and Macleod, 2003], in which the most

likely amplitude of the detection function is determined by studying the popula-

tion of observations around the current time. The moving median was shown to

be a successful to reduce noise and limit the number of spurious peaks [Rabiner

et al., 1975]. This approach was successfully applied on onset detection functions,

smoothing out small peaks while sharpening peaks of larger amplitude [Bello et al.,
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2005]. Median filtering is also computationally efficient, since the median can be

simply obtained by sorting an array – which costs significantly less than constructing

a histogram. The dynamic threshold is computed using the value of the median

over a short buffer around the current sample:

δt[n] = λ ·median(D[n− a], · · ·D[n], · · ·D[n + b]) + δ, (2.11)

where the section D[n− a], · · ·D[n], · · ·D[n + b] contains a spectral frames before

n and b after n. The scaling factor λ and the fine-tuning threshold δ are predefined

parameters. Onsets are then selected at local maxima of D[n]− δt[n]. The buffers

used for this operation typically include about a + b = 8 frames taken before and

after the current detection sample – less than 100 ms for a 44100 Hz sound and

hop size of 512 samples.

2.4.3 Real-time peak-picking

To achieve a robust selection of relevant maxima within a short decision delay, we

propose a modified approach that constructs a dynamic threshold based on a short

window around the current location. The dynamic threshold δt[n] is designed to al-

low for the detection of peaks in normalised functions without DC-components. To

compensate the absence of DC-removal and normalisation, an alternative threshold-

ing operation is chosen. In this implementation, the dynamic thresholding favours

both the median and the mean of a section of the detection function, centered

around the candidate frame:

δ̃t[n] = λ ·median(D[n− a], · · ·D[n], · · ·D[n + b])
+ α ·mean(D[n− a], · · ·D[n], · · ·D[n + b])
+ δ,

(2.12)

where α is a positive weighting factor. The moving median filtering is used in a

similar way as in the off-line implementation, except shorter buffer are used. The

value of b in Eq. 2.12 is minimised in order to reduce the delay of the dynamic

thresholding step. The introduction of the mean value attempts to replicate the

effects of the normalisation and DC-removal processes, without the use of a long

window, by using a dynamic value for the fine-tuning threshold. This step allows

for the peak-picking process to cope with large dynamics changes found in music

signals. Experimental results [Brossier et al., 2004b] have confirmed that, for small

values of a and b, the modified threshold is robust to dynamic changes in the signal;
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the detection functions were peak-picked using a moving window of size a = 5 and

b = 1 in Eq. 2.12.

This modified dynamic thresholding can be seen as a simple way to model the

post-maskings and frequency maskings seen in Section 1.1.2: a peak is selected in

the function if its amplitude is found above the average amplitude of past observa-

tions. If large amplitudes are observed in several consecutive frames, only the first

peak will be selected. Here we make the assumption that the system can determine

whether or not the current frame is an onset, depending only on a short frame

window in the past, and regardless future events in the audio signal.

After the onset detection function has been post-processed and a dynamic

threshold has been computed, the peak-picking process is reduced to the selection

of local maxima above the threshold. The detection of a local maximum implies

the comparison of at least three consecutive observations, which requires the knowl-

edge of one observation after the peak. Onset times are thus defined as any local

maximum in the peak-picking detection function:

D̂[n] = D[n]− δ̂t[n], (2.13)

with D[n] one of the functions defined in Section 2.3 and δ[n] defined in Eq. 2.12.

To reduce the delay of the peak selection, yet minimising the impact on the detection

of smooth onsets, we select all positive peaks defined by three consecutive spectral

frames and found above the dynamic threshold.

2.4.4 Silence Gate and pre-masking

Informal listening tests have shown that a high number of false detections were

found on a vinyl recording, higher than on a CD recording of the same piece, where

the level of background noise is less prominent [Brossier et al., 2004b]. Amplitude

variations in areas of low energy may not be perceived as onsets, yet observed as

peaks in the detection functions. To reject spurious detections in areas of low energy,

a simple envelope detector is built by measuring the mean energy of a window of the

signal. The envelope detector acts as a silence gate, which prevents several spurious

detections in background and quantisation noise, where onsets are more likely to be

produced by background noise. Moreover, a measurement of the signal loudness is

useful to detect offset times: a frame with a mean energy below a given threshold

following a frame with a mean energy above this threshold indicates an offset. The

threshold of the silence gate should be chosen to avoid spurious detections, not only
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Figure 2.4: Overview of the segmentation process: the audio signal is reduced to
an onset detection function at a lower sampling rate, and peaks are searched for
in this function; a silence gate is used in parallel to prevent spurious detections in
areas of low energy.

between the songs but also during the short silence periods within some songs. By

using the silence gate to discard onsets detected in low-energy regions, significant

improvements on the detection accuracy could be achieved – to be later discussed

in Section 2.5.3.

Because dynamic thresholding uses almost only past information, we have no

means to detect when a peak in the detection function will be shortly followed by

another larger peak. The system is thus prone to cause doubled detection. Using a

minimum inter-onset interval, we can ensure that two consecutive onsets will not be

detected within less than this interval. The parameter for the minimum inter-onset

interval controls the shortest time lag after which a new onset will be detected.

Obviously, imposing a minimum inter-onset interval reduces the number of false

positives, triggered for instance by amplitude or frequency modulation. However,

the minimum inter onset interval value should be short enough to identify rapid

successions of onsets. We have measured experimentally that using a time lag

20 ms to 30 ms was long enough to avoid several false positives, without affecting

the overall precision.
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2.4.5 System overview

For efficiency and flexibility, we have chosen to implement on the different detec-

tion methods defined in Section 2.3 and based on the phase-vocoder. Several onset

detection functions have been implemented and integrated as a library of C rou-

tines, described in Section 6.3. In the rest this chapter, we will concentrate on the

evaluation of these detection function with two aims: maximise the robustness of

the peak picking and minimise the delay of the system.

Figure 2.4 gives an overview of the process we use for the extraction of onset

times. The audio signal is first reduced to an onset detection function at a lower

sampling rate. We then perform temporal peak-picking on the detection function

to obtain a sequence of onset times. This sequence is combined with the output

of a silence detector to produce the onset/offset pairs that define the boundaries of

note objects.

Outlines of the post-processing and thresholding steps are shown in Figure 2.5

for both online and off-line implementation. In both case, low-pass filtering and

moving median are used to remove noise and jitter and follow amplitude variations.

In the off-line peak picking process, DC-removal and normalisation were used to

obtain uniform detection function profiles across a collection of sound samples.

Online, the moving mean aims at replacing these two steps.

After the processing of the phase vocoder and the onset detection function, the

detected onset time is delayed of a few frames passed the actual attack time in the

signal. The theoretical delay is of (3 + b) · hopsize/samplerate, where three frames

are required to detect a peak, b for the dynamic thresholding step. For a sampling

rate of 44100 Hz and a hop size of 256 samples, using b = 1 to compute the

dynamic thresholding, the expected system delay is of 23.2 ms and can be further

reduced by using shorter hop sizes.

Such a delay is acceptable for a perceptual attack time, and the onsets extracted

in real time can be used to trigger audio or visual events without perceptible delay.

For audio editing, cut-and-paste operations and other use of the annotated slices,

the onset location must be more precise, down to the sample as much as possible.

The different onset detection functions tend to peak at the maximum change in

the attack and the peak is further delayed by the post-processing step. Appropriate

removal of the system delay is required for a precise localisation of onset times. To

reduce clicking and phase jumps artefacts that would be obtained by concatenat-

ing and looping the individual slices, the selection of a zero crossing point in the

waveform is also preferable. From this local minima, ensuring that the attack of
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Figure 2.5: Comparison of off-line and online peak picking methods. Off-line, DC-
removal and normalisation are used to cope with loudness variations across the
database; the dynamic threshold modified for real time operation (Eq. 2.12) uses a
moving mean to cope with loudness changes.

the next slice is preserved, we look for the closest zero crossing to select the best

slicing location.

2.5 Evaluation

Evaluation of an onset extraction method a complex task and requires careful imple-

mentation and interpretation of the results. The aim here is to evaluate the ability

of an algorithm to retrieve the onsets location as perceived by the human ear, which

requires the gathering of hand-labelled sound files. The difference between man-

ual annotations and automatically extracted onset times can then be evaluated by

comparison and statistical analysis. With different instrument timbres and rhyth-

mic patterns, the variety of the database is important to evaluate the behaviours of

various onset detection methods against different types of signals.
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2.5.1 Manual annotations

The gathering of an annotated database is a long and difficult task. This process

typically consists in asking several listeners to manually label onset locations in a

collection of sound files, using a standard sound editor (Section 6.1.2) or a tool

designed for this purpose [Leveau et al., 2004]. The underlying idea is that each

sound file of the evaluation database should be hand-labelled by different listeners.

This cross validation process allows to minimise potential mistakes due to the an-

notation process. To reflect the perceptive results obtained for all listeners in the

evaluation metrics, the evaluation of extracted onsets should be done against each

manual annotation.

2.5.2 Precision and localisation

In order to quantify the success of the onset algorithms, the hand-labelled onset

times are compared to the extracted times. A tolerance window is chosen in order

to cope with the imprecision of the manual annotation process. A window of 50 ms

on each side of the hand-labelled onsets is commonly used, a little larger than

the average temporal discrimination lag to allow for imprecision in the annotations

[Leveau et al., 2004, Bello et al., 2005]. Onsets found in this tolerance window will

be considered as correct detections, whereas any other onsets will be considered

as false alarms. Errors types for time labels can be separated into two categories:

False Positives (FP) are false alarms, False Negatives (FN) are missed detections.

Figure 2.6 represents the different cases that are to be considered by the evaluation

algorithm. Points a and b in Figure 2.6 illustrate correctly detected onsets that

were found within the tolerance window. Both detected onsets will be counted as

correct detections (True Positives). Points c and d in Figure 2.6 gives and example

of wrong detections. In both cases, one missed detection (True Negative) and one

False Positive will be counted.

A refinement of this classification is to consider separately doubled detection,

which helps in understanding some of the artefacts of detection functions and to

highlight the various pitfalls encountered in the onset peak picking process. Point e

in Figure 2.6 represents a doubled detection. In this case, we will count one correct

detection and one doubled detection. Point f in Figure 2.6 gives an example of

merged detection, where we will count one missed detection and one correct de-

tection. While double detections could be pruned by forcing the minimum distance

between two detections to be equal or larger than the tolerance window, such a
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Figure 2.6: Different cases of good and bad detections. The horizontal axis is the
time-line. The upper part represents the hand-labelled onsets, the lower part the
detected onsets: a. correct detection, early but in the tolerance window; b. correct
detection, late but in the tolerance window; c. early onset; d. late onset; e. double
detection, both fall in the detection window; f. merged detection, two labelled
onsets are within the tolerance window, only one detection occurred.

constraint would also reduce the number of correct detections found within the

same tolerance window.

Each extracted onset must fall in one of these categories, so that after the list

comparison has been done, the following assertion must be verified:

Oorig −OFN −OFNm = Oexp −OFP −OFPd = OTP, (2.14)

where Oorig and Oexp are respectively the number of original hand-labelled onsets

and the number of automatically extracted onsets, while OFNm OFPd are the

number of merged and doubled detections. The list comparison can be implemented

using a matrix of size Oorig×Oexp containing all possible distances from each hand-

labelled onset to each extracted onset. However, the cost of computing this matrix

is O(NM), with N = Oorig and M = Oexp, and can become rather high for long

lists, for instance when several false alarms are found. The comparison of both lists

can be implemented with a cost O(N +M) by using two loops to scan through the

lists, which saves both memory space and computation time.

The next step is to measure the ratio of the different categories to ensure that

onsets are correctly detected and spurious detections are limited. Correct detection

and false alarm rates are defined as follow:

GD = (Oorig −OFN −OFNm)/Oorig (2.15)

FP = (OFP + OFPd)/Oorig. (2.16)

A perfect score would be GD = 1 and FP = 0. Another way to quantify the success

of the detection is to evaluate the precision and recall [Crochemore and Rytter,
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1994]:

P = OTP/Oexp (2.17)

R = OTP/Oorig, (2.18)

The rate of good detection GD is identical to the recall R. The definition of pre-

cision is less strict than 1 − FP , as the number of correct detection is compared

to the total number of extracted onsets Oexp, rather than to the number of labels

annotated by hand Oorig. In order to maximise the precision P and the recall R,

the weighted harmonic mean of precision and recall was proposed by van Rijsber-

gen [1979]. This measure, referred to as F1-measure in the information retrieval

literature [Yang and Liu, 1999], is computed with:

F =
2 · P ·R
P + R

, (2.19)

which is proportional to the surface occupied in the precision/recall plane. The

general formula for the harmonic mean is FN = (1 + N2) · P · R/(N2 · P + R).
Other useful F-measures include F0.5, which doubles the weight of the precision,

and F2, where the recall weights twice as much as the precision. We use here the

F1-measure, and will refer to it as the F-measure. Although the F-measure is less

indicative than the FP and GD rates, looking for its maximum value is useful to

optimise the parameters of the system.

To evaluate the localisation of the onset and align the extracted onset locations

to the annotated onsets, we can measure the time lapses found between the hand-

labelled onset and the automatically extracted times, within the tolerance window.

This is especially important in our case to evaluate the delay of the system. The

average time lag, its standard deviation and the distribution of time differences we

obtain provide important informations on the localisation of the extracted onsets.

2.5.3 Experimental results

With the given evaluation system, we can start improving the detection algorithms.

To evaluate the robustness of our implementation, various experiments have been

implemented to measure the performance of each function against different category

of signals, the speed of the algorithm and their computational cost, and the influ-

ence of the online peak picking method to compare with the off line peak picking

algorithm.
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Category Files Annotations Labelled onset
solo drums 30 90 2931

solo bars and bells 4 12 324
solo brass 2 6 213

solo plucked strings 9 27 431
solo singing voice 5 15 229

solo sustained strings 6 18 710
solo winds 4 12 266

poly pitched 10 30 859
complex 15 75 3563

Total 85 289 9526

Table 2.1: Details of the sound sample database database used for the evaluation
of onset detection algorithms [MIREX, 2005b]. Each file is annotated by 3 or 5
different listeners. The total number of annotation is shown in the right column.

Off-line implementations of the detection functions have proven to give good

results on a variety of CD recordings, including percussive, purely harmonic signals

and complex mixtures – pop and jazz recordings [Bello et al., 2005]. We now

want to evaluate the effect of our modified peak picking algorithm on the overall

performance results, as well as the precision of each detection function on the

different categories of signal.

Evaluation database

The database we used was gathered for the Audio Onset Extraction contest of

the 2005 Music Information Retrieval Evaluation eXchange [MIREX, 2005a] and

consists of 85 sound samples recorded at 44100 Hz on a single channel. Each

file was annotated by at least three members of the Centre for Digital Music at

Queen Mary University of London, with polyphonic recordings being annotated by

five listeners. The collection of files contains a large variety of instruments, music

styles and sound mixtures. For a total duration of about 15 minutes, a total of

9526 onsets have been hand-labelled by 15 different listeners. The files are sorted

along in various categories, as described in Table 2.1: struck bars and bells, solo

drums, solo brass (e.g. saxophone), singing voice, sustained strings (e.g. violin,

cello), plucked strings (e.g. sitar, harpsichord), polyphonic pitched instruments

(e.g. vibraphone, piano) and complex mixtures (e.g. pop, symphonic orchestra).

A smaller database was used to compare the results of an off-line implementa-

tion [Bello et al., 2005] against our real time peak picking implementation. This
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database consists of 1065 onsets and is divided in four broad categories: pitched

non percussive (e.g. bowed strings), pitched percussive (e.g. piano), non-pitched

percussive (e.g. drums) and complex mixtures.

Overview of onset detection functions

The proportion of good detections against false positives obtained on the smaller

database is shown in Figure 2.7. Note that the complex-domain, phase-based and

spectral difference approaches produce functions smoother than the HFC, as they

operate on information from more than one frame. It can be seen that, in contrast

to the off-line peak-picking implementation, the HFC outperforms the complex-

domain onset detection. This is due to the effect using short lengths of nm has on

smooth detection functions.

By design, the HFC and MKL functions are well-suited for the detection of

percussive onsets, and methods that take the phase in account, such as the complex-

domain and spectral difference approaches are best suited for the detection of tonal,

non-percussive onsets. By using the multiplication of the HFC and the complex

domain functions, the overall results are significantly improved. This combination

consistently returns the best results for the whole set, increasing the overall reliability

of the segmentation, and supporting the prevailing view that the different detection

functions complement each other. This result is not surprising if we consider that

both functions gave the best overall results, and is further confirmed when looking

at the localisation of each function.

The crossing of the different curves in the FP/GD plane suggests random factors

are present, especially for values of the threshold α smaller than 0.01 and larger than

1.7. Futher investigation would be necessary to determine whether the differences

between these algorithms are statistically significant.

In Figure 2.8, the different categories of errors are detailed, showing the effect

of the threshold on the overall score: using a very low threshold, the number of

correct detection is maximised, but several false positives are generated. When

increasing the threshold, both false positives and correct detections rates decrease.

The number of merged detection remains unchanged as it is dependent on the time

resolution of the algorithm. Instead, the rate of doubled detections decreases when

the threshold increase, which confirms the behaviour of the moving mean to be able

of discarding smaller peaks in favour of the larger ones.

Figure 2.9 show the F-measure values obtained with the larger database. The

curves tend to an optimum value for α = 0.4. When α is smaller than 0.4, more
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correct detections may be selected, but several false alarms occur. Using a higher

threshold value, from 0.4 to 0.9, the system avoids more false positives, but some

correct detections may be missed. Unsurprisingly, the temporal approach based on

energy gave the worst results. Most of the functions, including complex domain,

spectral difference, phase based and Kullback-Liebler, showed comparable results

on the overall database.

The MKL function shows a very different behaviour from the others. This can be

explained by the fact the MKL presents an important DC-component which as can

be seen in the profiles of Figure 2.2 and Figure 2.3. The moving mean in Eq. 2.12

tends towards the DC-component, whereas for the other function the mean tends

towards 0. Unlike the other functions, the F-measure for MKL decreases quickly for

values of α above 0.2. However the function performs correctly for smaller values of

the peak picking threshold. This behaviour can be avoided by using an appropriate

value for the constant δ in Eq. 2.12 and was kept here to explain the behaviour

of the peak picking. The multiplication of both MKL and HFC functions does not

show the same behaviour, since the HFC function tends towards 0 when in regions

of low energy.

Robustness across sound collections

In Figure A.8, the results obtained on the large database are detailed for each sound

category. Percussive sound samples with strong transients such as drums and struck

bars gave best results. The best score was obtained for the complex domain function

using a threshold α = 0.2 in Eq. 2.12. 81.3% of the 2931 labelled percussive onsets

were correctly detected with 2.86% of false positives. The detailed results also

show that only a few samples of the collection account for a major contribution

in the drop of the result. Most of the algorithms were unable to achieve usable

results on singing voice (Figure A.8 h). For string instruments, phase based and

complex domain function outstands the results with F-measures of 0.75 and 0.67

respectively, which confirms that combining information from more than one frame

provides more robustness on instruments with low transients.

An interesting behaviour can be observed for the dual function, the multiplica-

tion of HFC and MKL functions: the number of correct detections remains almost

constant for values of α greater than 0.4. Using the dual function with a high

threshold can thus maximise the number of correct detections while minimising the

number of false positives.
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Figure 2.7: Correct detections against false positives using a silence gate and the real
time peak picking method. Results obtained on the small database using values be-
tween 0.1 and 1.2 for α in Eq. 2.12 with different functions: high frequency content
(Eq. 2.2), complex domain (Eq. 2.6), spectral difference (Eq. 2.3), phase deviation
(Eq. 2.5) and multiplication of high frequency content and complex domain.

Real time trade offs

For applications in a real time system, we wish to identify how fast we can detect

onsets. In the top graph of Figure 2.10, the histogram of the time delays measured

between correct detections and hand-labelled onsets are shown for different window

and hop sizes. The distribution are centred around values of 23 ms for hop sizes

of 256 samples, which is consistent with the theoretical delay of the phase vocoder

and the peak picking algorithm – 4 frames of 5.6 ms. The details of other detection

functions are available in Appendix A. For all the phase vocoder detection functions,

the width of the distribution indicates the localisation is strongly limited by the

window size and the delay of the system is only dependent on the hop size. An

interesting behaviour is observed for the functions using a logarithm (Kullback-

Liebler, Figure A.13 and modified Kullback-Liebler, Figure A.14): the detection

tends to occur earlier one frame earlier than the other functions.
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In the bottom row of Figure 2.10, the localisation histogram obtained when using

a correction of four times the hop size are shown. The delay correction successfully

brings the distribution across 0, ensuring that most onsets are labelled earlier than

the hand-labelled position. Again, for logarithm based functions the delay is closer

to 3 frames, confirming that the functions peak one frame earlier than the other

(Figures A.14 and A.13).

The evaluation framework could also be used to calibrate precisely the location

of the onset. Logarithmic based onset detection functions showed the advantage of

a shorter delay in the peak rises.

Computational costs

Figure 2.11 shows a comparison of the time required to compute each of the detec-

tion functions. The benchmarks were run on an Apple iBook G4 1.0 GHz running

Debian GNU/Linux Etch. Further results against other implementation have been

provided by the MIREX contest and are recalled in Table 2.2 – these times were
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measured on different machines. Best results were obtained using Bayesian network

(Lacoste & Eck 2) to select the best function adapted for each signal and infer-

ring the onset locations using a tempo tracker. Amongst all the methods based

on the phase vocoder, our implementation (Brossier, P.) placed first, slightly after

Klapuri’s method using multiple frequency bands (Ricard, J.). Our implementation

was the second fastest, with a total runtime of 50 seconds. This time, significantly

slower than the 12 seconds obtained by the fastest algorithm (Collins, N.), can be

explained by the fact that we used a Python script to call our C functions, rather

than a C program, so that the Python runtime environment had to be loaded for

every sound file analysed. These loading times can be avoided by running the entire

benchmark within a single Python script (see also Chapter 6 for details).
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Figure 2.10: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections
normalised over total number of annotated onsets obtained with the High Frequency
Content (HFC). Details of results for other detection functions can be found in
Appendix A.
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Mirex 2005 database (Table 2.1, approx. 23 min) at window sizes 512, 1024 and
2048, with 50% overlap. Tests were run on an Apple iBook G4 1.0 GHz running
Debian GNU/Linux Etch.

Effect of the silence gate

The silence gate proved to reduce the overall number of false positives by about 2%

in all functions, while having a minimal effect on the percentage of correct detections

[Brossier et al., 2004b]. When reducing the silence threshold to allow the selection

of onsets with low energy, the overall performance increased. Observing the details

of the results, two effects are perceived. On one hand, about 0.5% more percussive

onsets are labelled correctly: some perceivable onsets were discarded with the silence

gate. On the other hand, the rate of false positives increased for pitched onsets.

Hence, the threshold for the silence gate must be set so that no correct detections

are discarded, which can be verified when using α = 0. We found that using a gate

at -70 dB discarded onsets found in background noise without reducing the number

of correct detections. This value may need to be fine tuned depending on the level

of noise present in the input signal.

Automatic parameter optimisation

Using either the F-measure or a maximum rate of false detection, the parameters

can be fitted over a given subset of the database, providing a statistical analysis of

the influence of each parameter. The various parameters are very important for the

onset detection and the temporal peak picking. Amongst the most important are

the size of the window and overlap ratio of the phase vocoder, the silence threshold,

and finally the threshold value for the peak picking. Optimising these parameters

can be very time consuming, and the automation of the search for optima is an
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important gain of time. The design of our software library, described in Chapter 6,

allows for the easy implementation of various combinations and automatic search of

best parameters values. The process to automate the optimisation of the parameters

relies on a simple iterative hill-climbing process, stopping when the maximum F-

measure value has been reached.

2.6 Summary

Simple but perceptually motivated modifications to existing peak picking algorithms

were proposed, and experiments on large databases have shown that the impact of

the peak picking algorithm is limited to a few problematic timbres. The causal

implementation opens the way to new applications, with live resampling and on

the fly construction of annotated segments. Moreover the fast and robust extrac-

tion of onset can significantly improve the speed of systems that require temporal

segmentation.

We have presented a complete framework for the evaluation of the performance

of these functions. Evaluation on large databases showed that various methods could

achieve a precise extraction of the onset trains without tuning of any parameters.

Using a single parameter, a perfect match can be obtained on more than 90%

of the sound examples. The evaluation framework has highlighted the benefit of

computing simultaneously two different functions. As all functions use the same

spectral frame, computing several detection function is computationally inexpensive.

This dual mode is the one proposed as the default settings.
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Algorithm % F % P % R GD FP FN M D Dist aDist Run
Lacoste & Eck 2 80.07 79.27 83.70 26.82 6.05 4.85 0.65 0.17 0.00613 0.0115 4713
Lacoste & Eck 1 78.35 77.69 83.27 26.55 7.91 5.12 0.62 0.19 0.00572 0.0115 1022

Ricard, J. 74.80 81.36 73.70 23.97 5.18 7.70 0.63 0.01 0.00593 0.0138 154
Brossier, P. 74.72 74.07 81.95 25.81 10.71 5.86 0.62 0.15 -0.00384 0.0111 50
Röbel, A. 2 74.64 83.93 71.00 22.62 3.46 9.05 0.51 0.52 0.00380 0.0084 159
Collins, N. 72.10 87.96 68.26 21.27 2.13 10.40 0.52 0.12 -0.00120 0.0069 12

Röbel, A. 1 69.57 79.16 68.60 21.40 5.05 10.27 0.48 0.88 0.00525 0.0087 158
Klapuri et al. 58.92 60.01 61.62 19.41 15.08 12.25 0.73 0.18 -0.02209 0.0276 56

West, K. 48.77 48.50 56.29 18.46 24.05 13.21 0.46 0.00 -0.00499 0.0138 179

Table 2.2: Overview of results of the MIREX 2005 Audio Onset Detection Contest [MIREX, 2005b]: overall average F-measure (F),
precision (P) and recall (R); average number of correct detection (GD), false positives (FP), false negatives (FN), merged (M) and
doubled (D); mean distance (Dist) and absolute mean distance (aDist) to hand labelled onsets; average runtime per file (Run).

Algorithm Thresh. % F % P % R GD FP FN M D Dist aDist
complex 0.4 74.1 81.1 68.2 22.5 5.22 10.4 0.78 1.14 0.00439 0.00906

energy 0.8 63.8 70.9 57.9 19.1 7.82 13.8 0.67 1.00 0.00875 0.01286
phase 0.3 74.4 79.0 70.2 23.1 6.13 9.79 0.81 1.52 0.00133 0.00872

hfc 0.3 76.6 80.7 72.9 24.0 5.72 8.91 0.98 2.01 0.00656 0.01131
specdiff 0.3 75.0 77.0 73.2 24.1 7.17 8.82 0.88 1.58 0.00643 0.01095

kl 0.4 73.1 79.4 67.7 22.3 5.78 10.6 0.86 1.27 0.00368 0.00850
mkl 0.2 67.7 75.7 61.3 20.2 6.49 12.7 1.24 3.95 -0.00005 0.01107
dual 0.3 76.1 76.9 75.3 24.8 7.44 8.12 1.18 2.92 0.00355 0.01061

Table 2.3: Onset detection results obtained after training with our aubio real-time implementation on database MIREX 2005. The
peak-picking threshold is indicated in the second column. Following column legends are identical to the ones in Table 2.2.



Chapter 3

Pitch analysis

The aim of a pitch detector is to determine the frequency perceived by the listener

as the “height” of a sound, its pitch. Many sounds, including some percussive ones,

are perceived as having such a height. Some sounds, such as a crash cymbal or

other percussive timbres, will instead not be perceived as pitched. Musical tones

often present mixtures of pitched and unpitched sounds, which can be articulated

in rapid variations. The goal of a pitch detection system is to identify the sounds

forming a sensation of pitch, follow the frequency corresponding to this perceived

height, and avoid unpitched sounds in the auditory scene.

Pitch detection methods are essential for the analysis of harmony in music sig-

nals. They are used in different systems, such as music transcription and score fol-

lowing, music recognition and classification, melody modifications, time-stretching

and other audio effects. A large number of methods has been proposed for the

estimation of the fundamental frequency of speech signals, nowadays used in vari-

ous applications, from speaker recognition to sound transformations [Rabiner, 1989,

Gómez et al., 2003b]. Several approaches for the determination of the pitch of mu-

sical tones have been proposed in the past; reviews of pitch detection methods

for music signals were given in [Roads, 1996, Klapuri, 2000, de Cheveigné, 2004].

Unlike speech, musical signals may have a very rich harmonic content and cover a

wider range of the spectrum. The harmonic structure of different instruments will

affect the reliability of different pitch models. Designing a robust pitch model is not

trivial, even on monaural solo recordings as we will see in Section 3.4.3, and this

task becomes increasingly difficult in the context of polyphonic music.

In this chapter, we describe different methods adapted to real time implemen-

tation. The methods selected are implemented as a collection of C routines for real

65
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time applications and their robustness is evaluated on monophonic recordings of sev-

eral instruments. Their ability to extract the predominant melodic line from complex

recordings is also tested. Different pitch perception models can be adapted to differ-

ent applications, and the evaluation of a pitch detection algorithm is a complex task,

since each system can be evaluated along several criteria. Evaluation techniques

for the performance of pitch detectors have been proposed, first for speech signals,

and more recently for music signals. We give an overview of these techniques and

discuss the results obtained with our implementation.

3.1 Introduction

The fundamental frequency f0 of a periodic signal is the inverse of its period. The

period may be defined as the “smallest positive member of the infinite set of time

shifts leaving the signal invariant” [de Cheveigné and Kawahara, 2002]. For speech

and music signals, which are not perfectly periodic, this definition must be applied

to a local context around the analysis instant, within a limited set of time shifts.

The subjective pitch refers to the auditory sensation of height. The fundamental

frequency of a tone usually corresponds to the perceptual measure of its pitch, but

there are exceptions. Periodic sounds may be outside the existence region of pitch,

the frequency region in which a pitch may be evoked [Ritsma, 1962, Pressnitzer

et al., 2001]. A sound may also not be periodic yet still evoke a pitch [Miller and

Taylor, 1948, Yost, 1996].

Musical instruments are often harmonic and the different partials contribute to

the sensation of pitch. Different instruments will have different harmonic structures.

These structures change across the musical scale within each instrument timbre and

evolve in time. Here we will denote the second partial of a harmonic spectrum as the

first harmonic of this spectrum. The frequency of the nth harmonic of a perfectly

harmonic signal can be expressed as fn = (n + 1)f0. However, most musical

instruments are not perfectly harmonic. For vibrating strings, the frequency of the

nth harmonic can be modelled as a function of f0 as follows:

fn = (n + 1)f0

√
1 + Bn2, (3.1)

where B is the inharmonicity factor, which varies according to the physical properties

of both the string and the body of the instrument [Fletcher and Rossing, 1998].

Ideally harmonic signals are obtained when B = 0. Important inharmonicity factor

are found on several music instruments, most notably the piano, where the higher
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Figure 3.1: Spectrogram of a sound file containing four instruments playing the note
A4 (440 Hz): a piano (0.3-3.1 s), a guitar (3.6-7.5 s), a vibraphone (8.6-9.7 s), and
a harpsichord (10.7-13.8 s); analysis window 2048 points, 25% overlap; The strong
transient components at the offset of the harpsichord correspond to the release of
the key (13.5 s).

partials are consistently displaced towards the highest part of the spectrum.

The relation between the partials, their respective amplitude, participate in the

sensation of timbre. The magnitude of each partial of an instrument is generally

found to be lower than that of the fundamental, but this is not always the case. Sung

voice for instance may present strong magnitudes at their first harmonic. Opera

singers often sing with such a strong partial so that they can be heard over the

orchestra. The clarinet favours the development of odd harmonics, so that partials

at frequencies fn will be found with a weak magnitude at even values of n. In all

these cases, the perceived pitch remains the same.

The presence of percussive transients in the attack of musical sounds makes

the determination of the period more complex. On sounds with sharp attacks, the

search for a fundamental frequency in the short transients may cause spurious or

missing estimates. Some instruments with long and breathy attacks may take more
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than 100 ms to settle on a steady state, and as they become longer, the transients

will confuse pitch detectors, delaying considerably the decisions of the system [Fry,

1992]. Other transient sounds such as breathing, key clicking, bow scraping and

other sounds from the instrument and the performer, are likely to complicate the

fundamental frequency estimation. Within a voiced region, small variations may

be observed in the period, for instance created by a glissando or a tremolo, and

rapid articulation of notes will require a high temporal resolution. Pitch detectors

should follow these rapid variations, yet avoid the spurious estimates caused by the

transients.

Figure 3.1 shows the spectrogram of A4 notes (440 Hz) played consecutively

on a piano, a guitar, a vibraphone, and a harpsichord. Each sound was extracted

from the Musical Instrument Sounds RWC database [Goto, 2004]. The harmonic

structure of the different timbres can be observed up to 6000 Hz. The harmonics

of the piano and the guitar are distorted towards the highest part of the spectrum:

the tenth harmonic of the piano is found around 5050 Hz for the piano, whereas

the tenth harmonic of the guitar is around 4900 Hz – instead of 4840 Hz for an

ideally harmonic sound. The difference between both timbres is due to different

inharmonicity factors B in Eq. 3.1, larger for the piano string than for the nylon

guitar string. The spectrogram of the vibraphone presents several differences with

the piano and guitar timbres: a strong transient component can be observed during

the attack, and the energy of the signal rapidly decays after the bar has been struck.

Moreover, only a few of the harmonics are being developed – in particular the third

(1750 Hz), eighth (4000 Hz) and twelfth (5750 Hz) harmonics – which is typical of

struck bars instruments [Fletcher and Rossing, 1998, Fabre, 2001]. The harpsichord

sound, at the right side of the figure, presents a strong partial one octave below the

fundamental frequency, and twice as many harmonics as the piano or guitar. The

harpsichord recorded in RWC database has two strings for each note: one is tuned

to vibrate at the desired frequency and the other one to vibrate one octave below.

Additional harmonics correspond to the lower of the two vibrating strings. Finally,

the harpsichord sample was recorded with a significant background noise, which

can be seen in Figure 3.1 after the silence separating the two notes and before the

harpsichord attack, from 10.6 to 10.8 s.

Nuances and playing modes of different instruments might significantly alter the

waveform of the signal and affect the performance of a pitch detection algorithm.

Transitions from regions of low-level voiced music to background noise can be very

subtle, and the estimation of the fundamental frequency will be more difficult when

the signal presents a very low amplitude. The presence of background noise in the
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recordings, typically the additive noise due to air displacements close to a micro-

phone, complicates the identification of the fundamental frequency. Reverberation

and other room effects – early reflections, ambient noises – may cause several con-

secutive notes to overlap and alter the spectral components of the signal. Finally,

the frequency range of an audio signal is broad: valid frequency estimates could be

found from 20 Hz up to 5 kHz, and designing a method able to perform reliably on

the whole spectrum is difficult.

A distinction is made between monophonic signals, where only one sound at

a time occurs, and polyphonic signals, where various sources can produce multiple

notes simultaneously, of various periods and possibly with various timbres. Tracking

pitch on monophonic signals is not trivial, and the complexity of this task signifi-

cantly increases when dealing with polyphonic sounds. We focus here on the analysis

of pitch in monophonic music on a frame by frame basis. The choice of the pitch

detection algorithms evaluated is driven towards their implementation in real time.

The complexity of each algorithm and its computational load are considered, along

with its robustness across the spectrum and on several instrument timbres. The

ability of these algorithms to extract the predominant melody line from complex

polyphonic recordings is also evaluated.

3.2 Pitch detection methods

Many of the pitch detection models used on music signals were derived from speech

processing techniques [Rabiner et al., 1976, Wise et al., 1976]. Two tasks can be

distinguished in speech pitch detection: identifying the voiced and unvoiced seg-

ments and estimating the fundamental frequency in the voiced segments. The use

of a separate voiced-unvoiced decision is often required to avoid producing spurious

detections in unvoiced segments, although a limited number of pitch algorithms

can identify voiced and unvoiced segments by design. The estimation of the fun-

damental frequency can be subdivided into three steps [Hess, 1984]: pre-processing

of the audio signal; extraction of the rough estimate; and post-processing for error

correction and temporal smoothing of the pitch track.

Algorithms for fundamental frequency estimation are generally classified into

two main categories: methods estimating periodicities in the waveform of the signal

and methods which look for harmonic patterns in the spectrum. This separation

between temporal and spectral approaches is not so clear, since some algorithms

can be computed in both time and frequency domains. Spectral approaches tend to
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give a fine resolution in the highest part of the spectrum, but are limited in the low

frequencies. As the period of the signal become shorter and closer to the sampling

period, the accuracy of its estimation in the temporal domain becomes limited by

the resolution of the digital signal, causing quantisation in the high frequencies.

Trade-offs between time-domain methods for low frequencies and spectral methods

for high frequencies were discussed in [Lyon and Dyer, 1986].

The time required to find a fundamental frequency estimate over a local context,

the delay of a pitch detector, is directly related to the number of samples, the

length of the signal windows, used to obtain the f0 estimate. If this number can

be kept small, and the algorithm to find the estimate does not take longer to

calculate than these samples take to arrive, a real time implementation can be

successful and yield short delays – typically 5 to 20 ms. Short windows are required

to estimate rapid variations on short periods. The main limitation of the real

time implementation of a pitch detection algorithm is thus its computational cost.

Computing a 4096 Fourier transform every 5 ms is just about accessible for recent

desktop computers, but incurs a significant system load. Because pitch detection

is meant to be used intensively in different applications, and eventually embedded

in low resources devices, minimising their computation time is important. In this

section we describe a selection of algorithms we implemented. Section 3.4 gives

quantitative results obtained on different databases for each of these algorithms.

3.2.1 Preprocessing

To maximise the efficiency of an algorithm over a broad range of signals, the signals

can be preprocessed. The aim of this step is to enhance the mid-range frequencies to

reflect the perception of loudness by the human auditory system and to maximise the

energy in the region of possible pitch candidates. A-weighting and C-weighting filters

are designed to this effect, increasing the loudness of the frequency components in

the 1 kHz to 5 kHz range, and decreasing the weight of low and high frequency

components of the spectrum. To achieve this, time domain filters are efficient in

real time, resulting in short delays and with a linear cost. However, designing such

filters is complex and their computation in floating point requires the cascading

of short filters to reduce the accumulation of errors [Schlichthärle, 2000]. In the

spectral domain, a precise equalisation can be done across the spectrum using a

weighting window, for instance to model the frequency response of the outer and

middle ear. These steps are optional, but tend to increase the accuracy of the

system and its robustness to the presence of noise. Moreover, they are in most
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cases computationally inexpensive. An interesting approach to this pre-processing

step is to remove or reduce non-stationary components of the signal to keep only

the sinusoidal components [Cano, 1998, Duxbury et al., 2001, Klapuri et al., 2001].

This approach is more complex but has been shown to improve the estimates of f0

in transient attacks.

3.2.2 Spectral domain pitch detection

According to Klapuri [2000], two types of methods can be distinguished for mod-

elling pitch in the spectral domain: spectral place methods rely on the localisation

of the fundamental frequency by selecting spectral components according to their

spectral location, and spectral interval methods rely on the estimation of distances

between different partials of the sound. Temporal methods based on the ACF can

be seen as spectral place approaches. An analogy can be made between these

two spectral approaches and the temporal theory and place theory of pitch per-

ception models [Moore, 1997, Chapter 5]: the temporal theory assumes the pitch

is perceived as the least common period in different auditory channels, whereas

place theory assumes that the perceived sound is compared to a bank of harmonic

templates.

Musical timbres can have very different spectral patterns yet produce the same

sensation of pitch. Different examples of spectral patterns perceived at the same

pitch are shown in Figure 3.2. To detect the pitch of each of these patterns,

de Cheveigné [2004] adopts the following reasoning. For pure tones (Figure 3.2 a),

the position of the peak in the short term magnitude spectrum can be used as a cue

to pitch. This approach fails for harmonic sounds where several peaks are present in

the spectral frame (Figure 3.2 b). Selecting the largest peak will work in some cases,

but fails on sounds with a first harmonic stronger than the fundamental frequency

(Figure 3.2 c). Selecting the lowest frequency peak will identify the correct peak

in all the above spectra, but will fail on sounds where the fundamental frequency

is missing (Figure 3.2 d). A reasonable modification is to measure the interval

between consecutive partials, which corresponds to the fundamental frequency of

the tone. As the interval between partials varies according to the inharmonicity of

the sound, spectral interval methods are more likely to be robust on inharmonic

sounds than spectral place approaches. However this approach fails on sounds with

missing partials (Figure 3.2 e), which brings to a final approach: for each partial in

the spectral frame, sum the energy found in each subharmonic of this partial. The

sum of the energy found for each bin are stored in a histogram. The histogram bin
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Figure 3.2: Different spectral patterns producing the same pitch cue: a. pure tone;
b. harmonic tone; c. harmonic tone with strong partial components; d. missing
fundamental frequency; e. inharmonic timbre; after [de Cheveigné, 2004]

found with the largest energy in the right-most part of the spectrum corresponds

to the pitch cue. This technique illustrates a spectral pattern matching approach

to model pitch perception. The multi comb pitch detection reviewed below can be

seen as an implementation of this approach.

Spectral domain techniques are usually based on the Fourier transform, which

can be efficiently implemented. Long windows are required to obtain sufficient spec-

tral resolution in the lower part of the spectrum. Longer windows implies a longer

delay, a higher computational cost and less temporal precision in the high frequen-

cies. Using zero-padding on the windowed signal before computing the Fourier

transforms up-samples the spectral frame, so that finer analysis can be achieved in

the lower part of the spectrum with no impact on the temporal resolution of the

higher frequencies. However, when short delays and low computational cost are

required, short time windows without zero padding are preferred to maximise the

trade off between low frequency resolution and temporal resolution. For example,

on a signal sampled at 44100 Hz, a window of length 4096 samples gives a resolu-

tion of 43.1 Hz per spectral bin, whereas the frequency interval of the entire lower

octave of the piano corresponds to a range of less than 30 Hz: MIDI notes 20 (A0,

27.5 Hz) to 32 (A1, 55.0 Hz). To achieve sufficient precision in the low frequen-

cies, the instantaneous frequency can be computed using the phase shift between

two consecutive analysis frame. The precision of this computation depends on the

overlap between frames, and at most half of the window should be used as the step
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size between two consecutive windows.

Fast comb spectral model

As a first approach to spectral pitch detection, we have derived an implementation

of a simple pattern matching algorithm as found in [Lang, 2003]. The algorithm

processes spectral frames as follows: the N peaks with the most energy are extracted

from the spectral frame, and their magnitude and interpolated frequency are stored

in an array. The predominant peak is then compared to the N −1 remaining peaks.

If one of the N − 1 peaks is found to be a subharmonic of the predominant peak

within a tolerance of inharmonicity, and with a magnitude higher than half the one

of the main peak, then this peak is selected as the new fundamental. The log of the

magnitude is used for the peak comparison. The proportion of a half for magnitudes

comparison is set empirically, as well as the inharmonicity criteria, written as follows:

n − 0.2 < fn2/fn1 < n + 0.2. The array of peaks is processed iteratively until no

peaks are left in the spectral frame and each of them has been compared to their

subharmonic. This approach allows the correct identification of the pitch cue for

spectral patterns shown in Figure 3.2 (a) to (c).

Multi comb spectral filtering

Several implementations of spectral pattern matching using frame histogramming,

similar to the one described by [de Cheveigné, 2004], have been proposed in the

past. The following f0 estimation algorithm is derived from [Lepain, 1999] and the

improvements described in [Bello, 2003]. The method is based on the spectral frame

X[n] of a phase vocoder, similar to the one used for the onset detection functions in

Section 2.3. The input signal is first pre-processed through an A-weighting IIR filter

to enhance medium frequencies and reduce the high and low parts of the spectrum.

On each frame, the magnitude spectrum is low pass filtered in both directions

and normalised to smooth out smaller peaks and minimise the effect of transient

components. After pre-processing, peaks are detected in the spectral magnitudes

frame and the list of peaks is passed to a harmonic comb. The assumption is made

that one of the P strongest peaks corresponds to one of the partials of the present

notes – for monophonic signals, we will limit to the case where P = 1. Each of

these peaks generates a set of pitch hypotheses defined by the first Z subharmonics

as:

f0
p,z =

fp

z
with

{
1 ≤ p ≤ P, p ∈ IN
1 ≤ z ≤ Z, z ∈ IN

, (3.2)
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where fp is the frequency associated with the bin of the pth peak, computed using

a quadratic interpolation method. For each of these f0
p,z hypotheses, a harmonic

grid is constructed over the spectral bins as:

Cp,z(k) =

{
1 if ∃ m s. t.

∣∣∣ 1
m

1
f0

p,z
− 1

k
N
fs

∣∣∣ < ωb

k

0 otherwise
, (3.3)

where fs is the sampling frequency, and m is an integer between 1 and M , the

maximum number of harmonics considered. The tolerance ωb is set to allow for

some uncertainty in the harmonic match of the the comb filter and is typically set

to a quarter of a tone. Different criteria are checked during the evaluation of each

candidate comb. The two most important are the number of partials matching the

comb harmonic grid, and the comb energy, estimated as the total energy carried by

the set of partials.

3.2.3 Time-domain pitch detection

An intuitive method to detect the fundamental frequency of the signal is to observe

the periodicity of the waveform. Time-domain techniques attempt to detect such

periodic patterns directly in the waveform of the signal. One of the fastest ways of

calculating the pitch is to count the number of zero-crossings within a given time

frame, which requires a single exhaustive search for sign changes in a signal window.

This method is reliable for very simple sounds such as pure sine tones, but fails on

more complex tones. For instance, the rate of zero-crossings of a harmonic sound is

often not related to the wavelength, as the waveform might change sign more than

once within a period. The presence of noise or transient components is also likely

to cause additional problems for the selection of relevant zero-crossings, either by

increasing or decreasing the number of sign changes in a given window. An intuitive

variation of this method is to count the number of peaks in a time frame, but faces

similar limitations. If two peaks are present within one period, the estimation of

the interval between peaks will fail. Generally, finding a reliable landmark in the

waveform for a robust estimation of the period is difficult [de Cheveigné, 2004].

Schmitt trigger

A more successful approach than zero-crossing or peak counting methods is to im-

plement a Schmitt trigger [Simpson, 1987, Sec. 10.19]. This is a special comparator

circuit with two thresholds. When the input voltage becomes higher than the “up-
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per” threshold, the output is a high voltage. When the input is instead smaller than

the lower threshold, the output is a low voltage. The trigger acts as a memory,

which describes a hysteresis cycle, and constitutes a period detector. In the case

of musical audio, the input voltage is the audio signal. To cope with amplitude

changes, the switching thresholds of the Schmitt trigger are modified to a pro-

portion of the highest and lowest samples in the current buffer. The fundamental

frequency candidate is directly given as the inverse of the rate at which the Schmitt

trigger switches back and forth from one power rail to the other. The program can

be written as a simple scan through each time window with a list of comparison

and assignments. In our experiments, we have used the implementation proposed

by Lang [2003] as a baseline for our evaluation. The simplicity of this model is also

its drawback, and the complexity of musical timbres requires further improvements.

Autocorrelation

Correlation functions compare the similarity between two signals on a sample-by-

sample basis. The autocorrelation function compares the signal with delayed ver-

sions of the same signal. Different versions of the ACF have been proposed. The

modified autocorrelation of a discrete signal xt may be defined as:

rt(τ) =
t+W∑

j=t+1

xjxj+τ , (3.4)

where rt(τ) is the modified autocorrelation function of lag τ at time index t [Rabiner

and Schafer, 1978]. With a periodic input signal, this function produces peaks at

integer multiple of the period, as can be seen in Figure 3.3. A slightly different

expression of Eq. 3.4 commonly referred to as the autocorrelation (ACF) in signal

processing [Klapuri, 2000] is computed using:

r′t(τ) =
t+W−τ∑
j=t+1

xjxj+τ . (3.5)

The number of terms in the summation of Eq. 3.5 is reduced for long τ , which

causes the autocorrelation to be tapered to zero towards long periods. The effect

of the tapering is shown in Figure 3.3, where the normalised version of this function,

r′t(τ)/r′t(0) is plotted.

For both functions, an exhaustive search of the maxima is done within a range

of lags to find the peak at the shortest non-zero lag, corresponding to the pe-
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Figure 3.3: Example of modified ACF and ACF on a harmonic signal. a. 1000 sam-
ples of the input signal – 22.7 ms at 44.1 kHz. b. modified ACF according to
Eq. 3.4. c. ACF according to Eq. 3.5 or Eq. 3.6. Because less terms are used in
the summation for long lags, the envelope of the ACF is tapered to zero.

riod estimate. The modified autocorrelation method in Eq. 3.4 is prone to loss

of relative precision when the period is small, whereas the tapered autocorrela-

tion looses precision when the period becomes large [de Cheveigné and Kawahara,

2002]. Autocorrelation based methods are found to be efficient at detecting mid

and low frequencies, and are commonly used in speech processing, where the range

of possible frequencies is limited. As the spectrum is broader for music signals, the
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computational cost, O(n2), becomes significantly higher.

The computational cost of the ACF can be reduced by computing the autocor-

relation in the spectral domain. The ACF (Eq. 3.5) can be expressed as the cosine

transform of the square spectral magnitudes:

r′t(τ) =
N/2+1∑

k=0

|Xt[k]|2 cos
(

2πkτ

N

)
, (3.6)

where Xt[k] is the Fourier transform of a zero-padded window of the signal. This

yields a computational cost O(n log(n)), which is significantly lower compared to

the temporal domain cost, O(n2). Expressed in this manner, the ACF can thus

be seen as a spectral place approach, which selects the fundamental frequency by

weighting the spectral components according to their spectral location [Klapuri,

2000]. Both approaches are prone to produce estimates at twice the period, since

harmonic components of the fundamental frequency are given a positive weight, and

less likely to produce errors in the higher octave, since in this case odd harmonics

are given a negative weight [Klapuri, 2000]. ACF based approaches are generally

found to be robust in the presence of noise, but are sensitive to formant and spectral

peculiarities found in both speech and music signals [de Cheveigné and Kawahara,

2002].

YIN

The YIN algorithm [de Cheveigné and Kawahara, 2002] is a temporal pitch percep-

tion model which provides a simple yet fairly robust way to extract pitch candidates

from a wide range of frequencies. The underlying assumption in this model is that

xt − xt+τ is minimal when τ is the period of the signal. Let W be the size of the

analysis window and dt(τ) the square difference function at time t with delay τ ,

given by:

dt(τ) =
t+W∑

j=t+1

(xj − xj+τ )2. (3.7)

The YIN function is a normalisation of the square difference function, obtained by

dividing the square difference found at a given lag by the average difference found

over shorter lag values. The cumulative mean normalised difference function is
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expressed as a function of dt(τ) as follows:

d′t(τ) =


1, if τ = 0

dt(τ)

/[
1
τ

∑τ
j=1 dt(j)

]
otherwise.

(3.8)

A minimum is then searched in d′t for increasing values of τ and selected when

found under a fixed threshold, typically set to 0.1. Figure 3.4 shows the square

difference function dt(τ), defined in Eq. 3.7, and the YIN function d′t(τ), defined

in Eq. 3.8, computed on 1024 samples of a saxophone recording. The minimum

of the function, around 213 samples, corresponds to the period of the note being

played by the saxophone. Minima at sub-multiples of the period, which highlight

the presence of harmonics, are “lifted up” in d′t(τ) by the cumulative normalisation

in Eq. 3.8. Minima at integer multiples of the period are pronounced but discarded

in favour of the first minimum found for the smallest value of τ . On the right

hand-side plot of Figure 3.4, the window of samples contains the beginning of a

note sung at the same frequency 207 Hz. The first minimum in d′t(τ) is a correct

estimate found above the tolerance threshold. This peak selection mechanism will

prove useful to avoid doubling and halving errors. When no minimum is found, no

period estimates are selected and the segment is marked as unvoiced. The value

of the minimum can be used as a measure of confidence of the period estimates.

Increasing the threshold value would correctly select the period estimates in some

frames, but using too high values would lead to octave errors, the minimum of

a harmonic of the signal being likely to be selected. Alternatively, if no valley is

formed under the tolerance threshold, the minimum of d′t(τ) can be used as the

period estimate. This approach slightly reduces the overall voiced error rate but

significantly increases the rate of non-voiced frames detected as voiced.

The longest period that can be selected by this model is half the length of the

window of samples. For very short periods, the resolution of the period estimate is

quantised at the sampling rate of the signal, and a quadratic interpolation around

the minimum is used to refine the estimate. This interpolation is important for

musical signals which may contain high fundamental frequencies. With appropriate

interpolation, the algorithm is able to select arbitrarily high frequencies up to half

the sampling rate.

Unlike the autocorrelation function, an advantage of the YIN function is that

only the first part of the autocorrelation vector has to be computed: as soon as a

minimum is detected under the threshold, the period value can be returned without
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Figure 3.4: Example of YIN function on two music signals at 44100 Hz. Left:
saxophone signal at 207 Hz (B3); Right: beginning of a voice signal (B3); In both
case, a minimum is detected at 213 samples on d′t[t]. On the saxophone signal, the
period is found under the 0.1 threshold.

further computations. The latency of the system can thus be reduced on high

frequencies to twice the length of the period. Moreover, this significantly reduces

the cost of computing the entire function d′t(τ), which is in O(n2). However,

real time implementation is affected by this cost being strongly dependent on the

fundamental frequency of the signal. To limit high computational costs on low

frequency signals and silence regions, the search could be limited to shorter periods

and frames containing enough energy, although this would prevent the detection of

long periods.

3.2.4 Spectral domain YIN

We have designed a new pitch detection method based on the YIN algorithm. One

approach to limit the cost of YIN is to compute the square difference function dt(τ)
in the spectral domain. The square difference function dt(τ) can be written as a
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function of the autocorrelation:

dt(τ) = rt(0) + rt+τ (0)− 2rt(τ). (3.9)

To facilitate the selection of the minimum, we construct a tapered square difference

function by replacing rt(τ) in Eq. 3.9 with r′t(τ) from Eq. 3.5. To minimise the

delay, we assume constant energy over the lag τ : r′t(0) ≈ r′t+τ (0), reducing the

dependency of the computation to the current signal window. Using Eq. 3.6 in the

above expression now leads to:

d̂t(τ) =
4
N

N/2+1∑
k=0

|Xt[k]|2 − 2
N

N/2+1∑
k=0

|Xt[k]|2 cos
(

2πkτ

N

)
, (3.10)

which corresponds to a constant term – the sum of the squared spectral magnitudes

– and the cosine transform of the squared magnitude taken at lag τ . This function

can also be seen to be the square difference function between the spectral magnitude

of the current window and a phase shifted version of the magnitude:

d̂t(τ) =
2
N

N/2+1∑
k=0

∣∣∣(1− e2jπkτ/N
)

Xt[k]
∣∣∣2 . (3.11)

Based on the tapered function r′t(τ) in Eq. 3.5, the function d̂t(τ) is also tapered

towards long lags. This effect is shown in Figure 3.5, where both implementations of

the square difference, Eq. 3.7 and Eq. 3.10, are plotted. Whereas the time domain

version presents different minima at integer multiples of the period, in the spectral

implementation, the lowest valley is formed at the period of the signal and other

minima are found with a higher amplitude.

The normalised function d̂′t(τ) is computed similarly to the temporal domain

implementation, using d̂t(τ) in place of dt(τ) in Eq. 3.8. Comparative examples

are shown in Figure 3.6. The upper plots in these two examples shows the two

test signals, synthesised using several harmonics and small amount of white noise.

Profiles obtained with the two methods, d′t(τ) in Eq. 3.8 and d̂′t(τ), computed using

Eq. 3.10, are plotted for each input signal in the lower plots of this figure. On the

left, the signal contains a slowly rising harmonic sound. The same frequency is

detected by both methods. In the temporal domain implementation, the threshold,

marked by a horizontal line, had to be set to a ratio of 0.3 to select the correct

minimum. For the spectral domain implementation, the minimum is found as the

smallest value of d̂′t(τ) for all values of τ , displayed with the vertical line in the
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Figure 3.5: Example of square difference function and tapered square difference
function obtained using the signal of Figure 3.3. a. square difference function
according to Eq. 3.7. b. tapered square difference function according to Eq. 3.10.

figure. One of the success of YIN is due to its reduced number of parameters,

limited to a single threshold parameter, which simplifies its implementation. In our

modified implementation, the selection of the best period candidate is limited to the

search for the minimum in d̂′t(τ), without depending on the threshold parameter.

To allow a better selection of period estimates within transition zones, no zero-

padding is used to compute Xt[k], the Fourier transform of the signal. The effect of

zero-padding is to up-sample the representation of the signal in the spectral domain.

Not using it smoothes out the valleys, increasing the resistance of the model to noise.

The signal on the right side of Figure 3.6 simulates a transition between two notes,

a low pitched sound and a higher tone. The second tone begins after about 800

samples. A strong transient component was simulated by the simplistic addition

of white noise for a duration of 300 ms. The transient component has lifted up

the function d′t(τ) for all lags, and several minima appear, notably at the frequency

of both tones found in this signal window. The selection of the smallest period

becomes ambiguous. Moreover the valleys of the temporal domain function are
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affected by the transient component. The spectral domain implementation d̂′t(τ)
instead contains deeper valleys. The selection of the minimum across all lags is

less ambiguous. Moreover, the combined effect of the tapered square difference

function and the absence of zero padding smooth out the valleys of the spectral

domain implementation. The minimum is better defined, whereas small errors can

be caused by the presence of high frequency components in d′t(τ).

For very short periods, it may happen that the minimum of d̂′(τ) is found at

the lower octave of the signal period, because both valleys at τt and 2τt are defined

by a limited number of discrete lag values. Computing the value of the function at

both interpolated minima locations will yield the selection of the correct minimum.

The threshold can still be used to discard minima found above a fixed confidence,

although this approach to the selection of the period reduces the success of the

voiced/unvoiced decision.

This new difference function can be computed using two Fourier transforms,

which reduces the cost across the whole spectrum to O(n log(n)), significantly im-

proving the computational load of the algorithm. The overall cost of the system also

depends on the temporal resolution of the frequency estimates, and for applications

demanding pitch tracks with very high resolution and containing high frequency

components, it may be found more efficient to compute only the first few mem-

bers of d′t[t] in the temporal domain. Finally, this implementation allows for a fine

equalisation of different frequency components, for instance by applying a different

weighting to each spectral magnitudes.

3.2.5 Post-processing

A reliable measure of the pitch period should give the exact beginnings and ends

between consecutive segments of different pitches. Pitch detectors typically use fixed

time frames from 5.6 ms to 50 ms. Spectral peculiarities, amplitude and frequency

modulation are likely to cause spurious estimates, leading to pitch estimate changes,

which will not be perceived as a change in pitch by the listener. The aim of the

post-processing step is to reduce the number of spurious estimates. Meanwhile, the

post-processing we introduce should not cause delay and preserve rapid variations

and transitions between notes.

A common approach for smoothing the output of a system is its convolution

with the impulse response of a low-pass filter. Low pass filtering was shown to

be successful at removing jitter and noise [Hess, 1984], but does not remove gross

errors and smears the transitions between notes and between voiced to unvoiced
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Figure 3.6: Example of YIN functions computed on two simulation signals at
44100 Hz using temporal (yin, dt(τ) in Eq. 3.7) and spectral (yinfft, d̂t(τ) in
Eq. 3.10) square difference functions in Eq. 3.8. Left: raising harmonic signal
at 100 Hz; Right: transition from 100 Hz to 900 Hz.

segments. Non linear smoothing may thus be more appropriate. The use of median

smoothing was proposed in [Rabiner et al., 1975], where a combination of linear

smoothing, to remove jitter and noise, and median smoothing, to reduce short

errors, is recommended. The moving median gives best results when using an odd

number of observations, and smoothing over 3 to 5 estimates is generally considered

long enough to reduce the impact of irregularities due to spurious detection and

transients, yet short enough to reflect rapid glissandi and vibrato [Rabiner et al.,

1975]. However, this implies an additional delay of 15 to 30 ms, depending on the

size of the filtering and the rate of the analysis.

Other approaches that have been used to obtain smoother pitch track are based

on the estimation of multiple candidates within a frame to find the best path across

consecutive frames. In [Laroche, 1995], several estimates are stored for each frame,

along with a confidence score. The optimal track can then be obtained by searching

for the path with the best score. In [Maher and Beauchamp, 1994], a measure of the

mismatch is computed between the measured partials of the estimated frame and
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Figure 3.7: Examples of pitch tracks obtained for different methods on a saxophone
signal. Top raw: original signal. Following rows from top: Schmitt trigger (schmitt),
fast spectral comb (fcomb), multi comb with spectral smoothing (mcomb), YIN
(yin), spectral YIN (yinfft).

the partials of a predicted frame. The set of partials resulting in the least mismatch

between the predicted frame and the estimated partials is selected. This proce-

dure helps avoiding octave errors and spurious detection. This two-way mismatch

measurement is used in [Cano, 1998] as a confidence measure of the estimates,

where past and future frames are combined to smooth the fundamental frequency

function. Dynamic programming techniques such as hidden Markov models (HMM)

can be used to find the best path across the estimates, as proposed in [Doval and

Rodet, 1993].

The separation of the fundamental frequency estimation and the post-processing

step is convenient for the implementation of the different modules, as well as for

evaluation purposes. This allows us to estimate independently the frame-by-frame

accuracy of the different pitch algorithms and the effect of the post processing.

Further considerations on the post-processing of the pitch track are proposed in

Chapter 5, where strategies to model notes are considered.
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Figure 3.8: Examples of pitch tracks obtained for different methods on a soprano
opera voice signal. Top raw: original signal; Following rows from top: Schmitt
trigger (schmitt), fast spectral comb (fcomb), multi comb with spectral smoothing
(mcomb), YIN (yin), spectral YIN (yinfft).

3.3 Multi-pitch and melody estimation

While various problems are encountered in the estimation of pitch on instruments

playing solo, many instruments can play multiple notes at the same time, and several

instruments can also play together. In addition to the difficulties of monophonic

estimation, pitch period estimation of polyphonic signals presents a number of other

problems as the signal complexity increases with polyphonic sources. Sources playing

together may be perceived as a single coherent sound, or non-existent sound arises

because of the combinations of multiple sources.

Simple polyphony may be successfully retrieved using monophonic detectors

iteratively, which have proven to be useful for the detection of duets [Klapuri,

1999a]. However, a single monophonic pitch detector is generally not considered

appropriate to perform multiple pitch detection. To estimate the pitches of different

sources playing together, several approaches have been used. The comb filtering

described in Section 3.2.2 was used iteratively in [Klapuri et al., 2002, Bello, 2003]
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to produce a set of candidates. Various approaches to the estimation of multiple

fundamental frequencies have been proposed in the literature, including the use

psychoacoustic models [Lyon and Dyer, 1986, Moore et al., 1997], or the integration

of musicological rules to model the probability of transition between notes [Klapuri,

2003b]. Identification of each note of a single instrument was shown to be effective

by explicit modelling of the notes [Kashino and Tanaka, 1993, Vincent and Plumbley,

2004]. In [Bello et al., 2002], a data base of isolated notes automatically learned

from the signal was successfully used to maximise the robustness of the extraction

of multiple fundamental frequency estimates. The design of multi-pitch estimation

algorithms including musical knowledge were described in [Klapuri, 2003b, Bello and

Pickens, 2005], with hidden Markov models (HMM) used to model the probability

of the relationship between notes or chords across several segments. The complexity

and the computational load of such systems makes their implementation in a real

time context difficult.

Different methods have been proposed to extract the best melody lines amongst

polyphonic pitch candidates [Klapuri, 2001, Paiva et al., 2004, Vincent and Plumb-

ley, 2005]. In all these approaches, the assumption is that the melody line is the

most salient note in the signal. A recent review of different strategies for the ex-

traction of melody was proposed in [Gómez et al., 2003a]. In the scope of this

research, we have limited our study to the robust extraction of pitch on isolated

notes and monophonic recordings. Although the approaches we have selected for

pitch detection are designed for monophonic signals, it is interesting to evaluate

their robustness to follow the melodic line in polyphonic environments. Quanti-

tative results for both monophonic and polyphonic signals are given in the next

section.

3.4 Evaluation and experiments

To compare the different pitch detection methods we have described and imple-

mented, we wish to evaluate their performance on a variety of music signals.

Methodologies for the elaboration of audio signal databases and the evaluation

of pitch extraction performance were proposed in [Rabiner et al., 1976], where a

study of different pitch algorithm was conducted using a database of hand labelled

voice signals. Unlike speech, for which the “ground-truth” estimates can be ob-

tained using a laryngograph [de Cheveigné and Kawahara, 2002], a major difficulty

in the evaluation of a pitch detection technique on musical signals is the construc-
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tion of a database of annotated sounds. For monophonic signals, the ground truth

can be created with the help of an existing pitch extractor and after manual cor-

rections of spurious pitch candidates. Alternatively, when the score is available, the

ground truth can be obtained with manual alignment of the score to the audio. For

polyphonic recordings, access to the unmixed monophonic tracks would be conve-

nient, although master recordings including the individual tracks are generally not

provided by copyright holders. We have chosen to use three different databases:

isolated notes, monophonic signals, and polyphonic recordings (see Section 3.4.2).

Another difficulty is the evaluation of the performance itself. Finding a good

measure to pinpoint the various artefacts of a pitch detector is not trivial. For

speech as for musical audio, the evaluation of pitch detectors requires the choice

of meaningful criteria, and a criterion suitable for one type of application might

not be suitable for all applications of a pitch detector. However, the characteristics

of pitch detection algorithms influence the choice of a set of criteria: accuracy

in estimating the pitch period, accuracy in making voiced-unvoiced decisions, and

robustness across various signals characteristics – timbre, loudness, noise. These

accuracies can be evaluated against many parameters and the importance of each

evaluation criterion should be chosen according to the specific application targeted.

For our real time implementations, the operating delay of the algorithms and their

computational costs have also been evaluated.

Five pitch detectors were evaluated on our databases: fast spectral comb filter

(fcomb, Section 3.2.2), multi-comb histogram with spectral smoothing (mcomb,

Section 3.2.2), Schmitt trigger (schmitt, Section 3.2.3), time-domain YIN algorithm

(yin, Section 3.2.3) and our modified spectral domain YIN (yinfft, Section 3.2.4).

Each function accepts at least two parameters: the length of the buffer window

and the overlap rate. In the following experiments, all other parameters, including

thresholds, maximum number of peaks and number of partials, are fixed.

3.4.1 Performance metrics

The accuracy of each pitch detection method was measured against annotated

data by counting the number of observations found correct within half a semitone.

Reference values were time shifted and nearest neighbour interpolated to match

the alignment and sampling rate of each method. A fixed time shift was used,

computed as a function of the window and overlap sizes. To further refine this

method, a corrective shift could be used to better align the ground truth estimate

with the observation. Another approach for the comparison may include a search
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for the best match across a set of time shifts. In our case, using a fixed time

shift was experimentally found appropriate when using the same buffer and overlap

sizes for all evaluated methods. Besides voiced/unvoiced categorisation and gross

error rate, pitch extraction algorithms will tend to make specific types of mistakes:

octave errors are frequent; fifth, third and seventh intervals between the detected

and actual pitches are also likely to happen. The following categories of errors were

used to mark each time frame: voicing detection: errors on unvoiced segments

correctly estimated; raw pitch accuracy: correct raw pitch estimates; chroma pitch

accuracy: correct pitch estimates including octave errors.

When the attack of an instrument contains loud and long transient components,

identifying a correct pitch can be difficult within the first frames of this attack, before

the steady state has been reached. For real time applications, we are especially

interested in knowing the speed of a pitch estimation algorithm, so we wish to

evaluate the ability to recognise a correct pitch early in the attack of the sound.

This is highly dependent on the timbre being analysed, and requires testing on a large

database. The frequency range over which a pitch algorithm performs accurately

has also to be measured. Another important matter is the perceptual accuracy of

the algorithm, or how well the estimated pitch contour matches the one perceived

by the listener. While full evaluation of this subjective criterion would imply the

deployment of extensive perceptual testings, and the tests to be run by different

listeners, our real time implementation of each of the pitch detectors facilitates

informal tests to verify the perceptual accuracy of the detection on a large variety

of signals.

3.4.2 Evaluation databases

Small databases have been labelled, either by hand or semi-automatically, by dif-

ferent research teams for their experiments [Rabiner et al., 1976, de Cheveigné and

Kawahara, 2002]. Although large databases of music signals are available [Goto,

2004, Freesound, 2005], these databases have not been manually annotated and

cross-validated. Large amounts of data could be obtained in different ways: run-

ning simulations on existing audio databases, recording or synthesising new material

and finally annotate existing recordings. We have chosen to use the collection of

isolated notes found in the Real World Computing database [Goto et al., 2003], and

the databases gathered for the 2004 Audio Melody Extraction contest of the Music

Information Retrieval Evalutation eXchange [MIREX, 2004b].
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Instruments Modes/Nuances Low High Total
piano 13 21 108 1056

elecguitar 7 40 76 468
vibraphone 13 53 89 444

rhodes 5 28 100 292
clavinet 5 29 88 240

Total 43 21 108 2500

Table 3.1: Details of the instrument categories in the database of isolated notes.
Each category contains several playing modes and nuances. The lower and higher
values for each instruments are indicated in MIDI note number. The last column
contains the total number of notes.

Isolated notes

To evaluate the robustness of the pitch algorithms against various instrument tim-

bres, a first evaluation was made on recordings of isolated notes sampled at 44100 Hz

taken from the RWC database [Goto, 2004]. The database comes with a large col-

lection of instruments [Goto et al., 2003] recorded solo in different conditions: each

note of their register is played in different modes – staccato, pizzicato, tremolo –

using different methods – pedal, slapping, hard or soft mallets – and at different

dynamics – pp, p, mf, f, ff. We selected sound samples containing several pianos, vi-

braphones, electric and acoustic guitars, clavinets and Rhodes. Problematic timbres

such as the harpsichord or xylophone [Fletcher and Rossing, 1998] were avoided, but

the choice of the instruments was made to represent a large range of timbres. The

database is made of one single file per playing mode and instrument, containing

individual notes played consecutively and separated with silence. The separation

and labelling of each note was done automatically, using a simple silence detection.

From the meta-data associated to each original file in the RWC, the generated files

could be named after the RWC reference names and their MIDI note number. Ta-

ble 3.1 shows the details of the database. The MIDI Numbers of some segments

were found to have offset errors, either in the original files – 6 chords of the guitar

played in a row – or due to over-segmentation within silences, and were corrected

manually.

The ground truth of each note is assumed to be the frequency of the MIDI note

at a constant value. This is a poor modelling of the actual instantaneous frequency,

which follows variations due to the tuning of the instrument or the presence of

vibrato. However what we know is the actual note being played, and identifying

this note is precisely what we want to achieve.
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Category Files Duration
pop 4 84 s
midi 4 80 s
daisy 4 75 s
opera 4 72 s

jazz 4 57 s
Total 20 368 s

Table 3.2: Duration of the sound files used for the evaluation of the pitch detection
algorithms on monophonic and polyphonic signals. Both databases were obtained
from the MIREX 2004 Melody Extraction contest [MIREX, 2004b]. Complete files
listings are given Table A.3 and Table A.4.

Complex recordings

A database of 20 sound files, gathered for the 2004 MIREX Audio Melody Extraction

contest [MIREX, 2004b], was used to evaluate the accuracy of our implementations

on real recordings in monophonic and polyphonic conditions. The annotations were

prepared from master recordings which included unmixed original tracks. The fun-

damental frequency estimation was done semi-automatically, with the help of a

monophonic pitch detection method based on SMS [Cano, 1998]. Annotation of

the monophonic track are used for the predominant melody of the polyphonic tracks.

The set of files, described in Table 3.2 contains: 4 items consisting of a MIDI syn-

thesised polyphonic sound with a predominant voice, 4 items of saxophone melodic

phrases plus background music, 4 items generated using a singing voice synthesiser

plus background music, 4 items of opera singing, two with a tenor male voice and

two with a soprano woman voice, 4 items of pop music with singing voice.

3.4.3 Experiments

Several experiments were run to evaluate our real time implementations. Pitch

detection algorithms have been implemented as a collection of C routines along

with the code used for the onset detection methods described in Chapter 2. After

verifying the tuning of the algorithm by listening to its output and testing on synthe-

sised signals, frame by frame evaluation of the pitch tracks were done on different

databases. A tolerance of half a semitone is used to cope with the detuning across

the collection, but could be set to smaller to analyse instruments with non-Western

and micro-tonal scales.
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Figure 3.9: Percentage of raw pitch accuracy obtained on all 2500 isolated notes
played on 5 different instrument timbres. Each plot corresponds to a different pitch
detection method: Schmitt trigger (schmitt), fast spectral comb (fcomb), multi
comb with spectral smoothing (mcomb), YIN (yin), spectral YIN (yinfft). See
Table 3.1 for database details.
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Figure 3.10: Percentage of raw pitch accuracy obtained on 1056 isolated piano
notes played in 13 different modes. See Figure 3.9 for complete description.
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Figure 3.11: Percentage of raw pitch accuracy obtained on 468 isolated electric
guitar notes played in 7 different modes. See Figure 3.9 for complete description.
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Figure 3.12: Percentage of raw pitch accuracy obtained on 444 isolated vibraphone
notes played in 13 different modes. See Figure 3.9 for complete description.
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Figure 3.13: Percentage of raw pitch accuracy obtained on 292 isolated rhodes
notes played in 5 different modes. See Figure 3.9 for complete description.
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Figure 3.14: Percentage of raw pitch accuracy obtained on 240 isolated clavinet
notes played in 5 different modes. See Figure 3.9 for complete description.
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Isolated notes Figures 3.9 to 3.14 present the results obtained on the set of

instruments with a window of 2048 points. The number of correct detections found

within the tolerance of half a semi-tone was counted for each note in the database

and averaged across different playing modes. The graphs are presented for a range

of MIDI notes corresponding to the register of each instrument. The keyboard at

the bottom of each graph represents all the notes in the instrument’s register. For

completeness, we included the lower octave of the piano, MIDI notes 21 to 33 in

Figure 3.10, although the algorithms are not designed to achieve sufficient accuracy

at these frequencies with a window size of 2048 points.

This approach allows us to pinpoint precisely the various difficulties that arise

for different timbres and playing modes in different parts of the spectrum. Specific

timbres, such as the one of the clavinet for which results are shown in Figure 3.14,

highlight the tendency of the Schmitt trigger to produce octave errors, whereas

YIN remains consistently more stable over the whole keyboard of the instrument.

Some instruments are found to be problematic to all methods, as can be seen in

Figure 3.12 with the results of the vibraphone.

The results obtained on the entire database, Figure 3.9, show that more than

60% of the frames could be retrieved accurately as low as MIDI note 36 using one of

the three temporal domain methods, Schmitt trigger, YIN, or modified YIN. With

the fast comb approach in the spectral domain, more than 90% of the frames could

be retrieved up to MIDI note 100. The multi comb method does not perform as

well as the fast comb algorithm in the highest notes of the database, from MIDI

notes 92 to 108. On these notes, the spectral pattern matching method is less

efficient because too few harmonics are detected in the spectrum, which causes the

algorithm to select the wrong frequency, in most cases one octave below the actual

fundamental frequency.

The overall score of the Schmitt trigger, which retrieves only slightly more than

70% correct estimates in the MIDI range 45 to 90, has to be balanced with its

reduced computational load. Detailed results show that the Schmitt trigger has a

robust behaviour on the electric guitar, Figure 3.11, while the results are unsteady

on the Fender Rhodes and clavinet timbres, Figures 3.13 and 3.14. Although less

versatile than the fast comb method, the multi comb approach is more robust in

the MIDI range 48 to 80, especially on timbres with loud transient components

such as the piano, Figure 3.10, or the clavinet, Figure 3.14. The behaviour of

the multi comb method in the highest part of the registers could be improved by

reducing the number of harmonics searched for when too few peaks are detected

in the higher part of the spectrum. After reducing the number of comb candidates
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from 5 to 2, results achieved on the highest notes with the multi comb approach

were comparable to that of the fast comb filter. However, reducing this number

did also affect the overall results in the center octaves of the register, thus limiting

the advantage of the pattern matching algorithm. We chose to leave the number

of harmonic candidates at a constant value of 5, which was experimentally found

to give best results in the center octaves of the keyboard.

Both the original YIN algorithm and our modified spectral domain YIN present a

significant improvement to the Schmitt trigger and the spectral domain approaches,

with as much as 90% of the frames retrieved in the MIDI range 60 to 95. This im-

provement is particularly noticeable on the piano and Rhodes timbres, Figures 3.10

and 3.13. Results obtained on piano notes show that the temporal domain YIN is

more accurate than our spectral implementation on the lowest part of the keyboard,

from MIDI notes 29 to 37. This is due to the distortion introduced in our approach

when assuming r′t(0) ≈ r′t+τ (0) in Eq. 3.10, and which becomes significant when

τ is large. The temporal implementation of YIN is also more robust on the highest

notes of the keyboard, from MIDI notes 91 to 103. In this case, despite the search

for several interpolated minima described in Section 3.2.4, the spectral implemen-

tation of YIN tends to select a minima at twice the period, causing octave errors.

However, overall results obtained on MIDI notes 35 to 90 confirm that our new

detection method is significantly more robust than the temporal YIN algorithm in

the MIDI range 45 to 90, with more than 95% of the frames consistently labelled

with the correct fundamental frequency.

Monophonic and complex recordings The results obtained on the monophonic

database [MIREX, 2004b] using the five detection algorithms are shown in Table 3.3.

Window sizes of 2048 points were also used in these experiments. Best results

on the solo recordings were obtained for our spectral YIN implementation, with

85.09% of raw accuracy, followed by the multi comb spectral peak picking, with

83.89% of accuracy. Overall, spectral methods appear to be more affected by octave

errors than temporal methods, as can be seen in the detailed results (Table A.5 in

Appendix A): the fast spectral comb method detects almost 10% of the frames

in the wrong octave, whereas for the Schmitt trigger less than 2% of the frames

are labelled in the wrong octave. The same is observed for mcomb and spectral

YIN methods, with respectively 0.39% and 0.56% of frames causing octave errors.

The accuracy of the multi comb filtering technique was significantly improved when

pre-processing the spectral frame with normalisation and low-pass filtering of the

spectral frame, reducing the error rate by more than 15%. The C-weighting filter
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schmitt mcomb fcomb yin yinfft
daisy 91.13 95.51 95.33 94.10 95.84
jazz 91.04 95.01 94.49 93.70 94.62
midi 69.38 94.09 91.23 90.26 93.68

opera 23.37 52.01 48.99 37.11 56.06
pop 71.38 82.83 79.03 79.80 85.21

Total 68.46 83.89 81.71 78.91 85.09

Table 3.3: Results of the raw pitch accuracy for the monophonic database Table 3.2;
best scores are shown in bold, worst scores in italic; detailed results are listed in
Table A.5.

accounts for about 0.5% of improvement for both spectral comb methods.

Results on the polyphonic database, Table 3.4, were obtained using the same

parameters as for the monophonic simulations, apart from the threshold of the YIN

algorithm, which was set to 0.7, instead of 0.3 for the monophonic database, to

allow the selection of minima in the presence of strong transients. The Schmitt

trigger clearly did not cope with the presence of other instruments: the result of

this method dropped to less than 7%. The fast comb filter algorithm appears to

be less affected by the presence of background music than the multi comb filtering.

Detailed investigation of the results revealed that the multi comb method is actually

tracking the bass line on several of the recordings, suggesting the weighting of the

lower frequencies are over-fitted for monophonic sounds. Again, our modified YIN

algorithm implemented in the spectral domain gave best results over the polyphonic

recordings, with almost 60% of the frames correctly identified. Note that since the

evaluation metric we use is stricter than the one used for the MIREX Audio Melody

Extraction contest, we do not compare our results to the one obtained by other

participants. However, the accuracy achieved by our new method yinfft represents

significant improvements to the multi comb and YIN methods. For completeness,

results obtained by participants of the MIREX 2004 Melody extraction contest are

included in Table A.7.

Computational costs Computational costs are not always predictable from the

theoritical cost, as the actual cost can depend on the fundamental frequency of the

signal and its complexity. The temporal domain YIN algorithm will tend to be less

expensive in detecting shorter pitch periods, since the computation of the square

difference function can be stopped as soon as a minima has been detected in the

YIN function. The cost of spectral methods may slightly vary depending on the
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schmitt mcomb fcomb yin yinfft
daisy 12.43 80.76 76.80 73.12 72.42
jazz 7.42 60.64 54.18 61.74 70.31
midi 3.17 38.09 46.91 47.20 46.46

opera 7.40 39.63 35.97 16.00 49.12
pop 4.85 23.88 16.24 32.47 62.42

Total 6.94 47.72 45.75 45.57 59.25

Table 3.4: Results of the raw pitch accuracy for the polyphonic database Table 3.2;
best scores are shown in bold, worst scores in italic; detailed results are listed in
Table A.6.

preprocessing steps, the number of peaks in the spectral frame, and the method

used to find them. However, the overall cost of the spectral domain approaches is

mostly due to the Fourier transform, which remains the same for different signals.

Tests were run on the polyphonic database, described in Table 3.2, and which

contains a variety of sounds with fundamental frequencies in different parts of the

spectrum. Each sound file was processed multiple times in a row by the same

algorithm to reduce the influence of disk access time and other input/output redi-

rections. Computation times obtained for different window sizes with our C routines

are presented in Figure 3.15. The overlap rate was fixed to 50%, so that each sample

was processed twice regardless the window size.

To minimise the cost of loading and unloading the library at each run and on

each sound file, the Python interface described in Section 6.4.2 was used to auto-

mate extraction and evaluation tasks, and proved useful at optimising computation

times: about 15 minutes were required to compute the five detection methods on

the database of 2500 isolated notes, corresponding to 140 minutes of audio, the

equivalent of two compact discs. The single process Python program helped re-

ducing the overall memory usage, and significant improvements were brought by

maximising file caching in the computation sequences.

As expected, the computational cost of the Schmitt trigger algorithm is by far

the lowest, the method being limited to a series of variable assignments for each

buffer. Both spectral methods, fcomb and mcomb, are significantly more expensive

than the Schmitt trigger. Moreover, their cost descreases when longer windows

are used, which confirms that the Fourier transform, computed with the optimised

FFTW library [Frigo and Johnson, 2005], has a cost O(n log(n)). Unsurprisingly,

the multi comb method, which includes preprocessing of the spectral frame and

the computation of several harmonic combs, is more expensive than the fast comb
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method.

The YIN method reveals a behaviour different from the one of other methods:

as mentioned above, the cost becomes higher when longer windows are used, and

despite the variable cost depending on the fundamental frequency of the signal, we

measured longer runtimes with longer windows. Indeed, when no minima is found

below the threshold, the whole square difference function, which costs O(n2), has

to be computed. Listening tests using the real time implementation on synthesised

signals also showed that this variable cost was problematic, causing some audio

frames to be dropped on signals with low fundamental frequencies.

Our novel approach, yinfft, gave a cost in O(n log(n)) as expected by its im-

plementation using Fourier transform, and confirmed the improvement brought by

our modifications. As we use the FFTW library to compute the Fourier trans-

forms, which uses memory caching and other optimisation techniques, computing

two transforms for each frame is even less expensive than the computations of the

multiple harmonic comb.

3.5 Summary

We have presented and evaluated five different methods for the extraction of pitch

and introduced a new spectral domain version of the YIN algorithm.

In the experiments, we compared fast spectral comb filter (Section 3.2.2), multi-

comb filter with spectral smoothing (Section 3.2.2), Schmitt trigger (Section 3.2.3),

YIN (Section 3.2.3) and a novel method, yinfft, derived from the YIN algorithm and
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computed in spectral domain (Section 3.2.4). Each method was evaluated against

three different databases: isolated notes from different instruments playing in differ-

ent modes, extracted from the RWC database [Goto et al., 2003], 20 monophonic

tracks from MIREX 2004 [MIREX, 2004b], and 20 polyphonic mixes, also obtained

from MIREX 2004.

Computationally simple methods, such as the Schmitt trigger and the fast comb

filter, were successful at finding the fundamental frequency on synthetic sounds and

on timbres with clear harmonic structures, such as the guitar or the Fender Rhodes.

On the other hand, some instruments such as the vibraphone caused octave errors

to all algorithms. Two of the detection techniques, yinfft and multi comb filter,

gave the best results on monophonic recordings, with more than 83% of the frames

correctly retrieved. The results obtained on isolated notes showed that YIN was the

most versatile algorithm, able to retrieve more than 90% of the frames for notes

from 55 Hz (A1) up to 1760 Hz (A6) with 2048 points window.

The results achieved by our novel detection method, yinfft, revealed a significant

improvement to the other methods, for notes between 69 Hz (A2) and 1568 Hz (G6)

on for monophonic and polyphonic databases. Overall, our spectral implementation

of YIN appears more robust than all the other methods we tested. No parameters

need to be adjusted for this method, which achieved best results on all databases,

with almost 60% of the frames correctly retrieved on polyphonic signals, and 85%

for monophonic signals.

Enhancements to these algorithms could be made in several ways. First, the

higher and lower pitchlimits could be used as parameters for the pitch extraction

algorithms, to look for pitch candidates inside a specific range, rather than discarding

pitch estimates found out of this range. For high-resolution pitch tracks, peak

continuation mechanisms could improve the continuity of the pitch track. This

continuity is important to obtain perceptually relevant results. For this reason, a

measure of continuity in the evaluation against manually annotated pitch tracks

would be interesting.



Chapter 4

Tempo tracking

The localisation of beats is an essential part of an automatic annotation system.

Performers will tap along the beat in order to keep in time, and the task of tracking

tempo is well known to performers, Disc-Jockey or producers. Foot tapping is an

intuitive movement, and the listener requires no musical knowledge to tap along the

tempo [Dixon, 2001b]. Beat tracking is a well known task in the Music Information

Retrieval community, and several approaches have been described in the literature.

Allen and Dannenberg [1990] used sequences of note onsets to detect beat period

candidates. To estimate the tempo of symbolic scores, Rosenthal et al. [1994] note

events from MIDI files. Dixon [2001b] employed an onset detection method to

extract onset times from the audio signal, then deduce beat periods estimates from

these onset times. Several descriptors derived from the audio signal were used in

[Goto, 2001] to track for the best period candidate using multiple hypothesis. A

review of several beat detection algorithms was given in [Hainsworth, 2004].

A causal beat tracking algorithm specifically designed to track tempo changes

in real time was described in [Davies and Plumbley, 2004]. The algorithm, based

on a phase vocoder and an onset detection function as described in Chapter 2, was

tested over a large database of annotated music samples. We present comparative

results obtained using different methods and describe our real-time implementation

of the algorithm [Davies and Brossier, 2005].
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4.1 Introduction

Although tapping may seem natural for a human listener, automatic tempo tracking

is not a trivial task, especially in the case of expressive interpretations and tempo

changes. Rhythmic structures can be very complex: their perception has been mod-

elled using a hierarchy of streams forming patterns of different durations [Lerdahl

and Jackendoff, 1983, London, 2002]. Three layers are accordingly described in the

literature. The tatum is a time quantum dependent on the musical context, and is

the shortest time interval found between onsets creating the perception of a rhythm.

The tatum provides a fine grained rhythmical grid at around 40 ms to 100 ms res-

olution, related to the minimum perceptible inter-onset interval. The tactus, often

referred to as beat period, is the foot taping rate, with typical values ranging from

200 ms to 1.5 seconds. The beat period is usually found to be at multiple values

of the tatum. At a higher level, the measure is related to the time signature of

the piece and often corresponds to harmonic changes and rhythmic variations. The

metre is the phenomenon of entrainment which arises in a musical context from the

combination of these patterns in rhythms. Music performances are not perfectly

isochronous, and a system to extract beat locations from real musical audio must

take into account important deviations from one beat to another.

In [Lerdahl and Jackendoff, 1983], a set of rules to derive rhythm patterns was

described. The concept of metrical dot notation was proposed, formalising the three

hierarchic levels – tatum, tactus, measure – on score notations. Alternative rules

drawing looser constraints for the generation of complex rhythm figures were pro-

posed in [London, 2002]. The development of these rules and a better understanding

of the perception of rhythm has helped the design of algorithms to extract the beat

location from a MIDI score and from musical audio. For example, Brown [1993]

describes a system to extract tempo from MIDI files using an autocorrelation of the

onset times of the notes. The task of tracking tempo is highly subjective, and it has

been shown that perception of tempo varies from one listener to another [Moelants

and McKinney, 2004]. Systems for simultaneously tracking multiple tempo values

were described, either based on a sequence of onset times [Allen and Dannenberg,

1990] or a MIDI score [Rosenthal et al., 1994]. Prior knowledge of a musical piece is

used by Raphael to drive an automatic accompaniment system capable of following

tempo changes [Raphael, 2001a,b].

Several approaches have been proposed to extract beat location from audio

signals in the literature, a number of which are explicitly based on sequence of onsets

or on onset detection functions described Chapter 2. The algorithm described in
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[Goto and Muraoka, 1995a,b] uses multiple “agents” with different strategies to

detect temporal features such as onset times, inter-onset intervals and pre-defined

spectral templates. Hypothesis from the different agents are then combined together

to infer reliable beat locations. At the time, the system could run in real-time using a

specific parallel computer. Improvements of this algorithm were described in [Goto,

2001] and include extraction of bar and tactus locations and enhancements for

non-percussive audio signals. Scheirer [1998b] used psychoacoustically motivated

amplitude envelopes detected in several bands as the input of a bank of comb filters.

The outputs of each filter are summed together and the function obtained is searched

for peaks, corresponding to the best tempo estimates. Scheirer [1998b] implemented

this algorithm as a computer program, and real time tracking of music was possible

on an advanced desktop workstation. The BeatRoot algorithm described in [Dixon,

2001b] also uses an onset detection function to detect onset times in a first pass,

then finds different beat period hypothesis by constructing a histogram of the inter-

onset intervals. The locations of beats are infered by looking for sequences of events

which match one of the period hypothesis and align to the onset times. In [Klapuri,

2003a], a probabilistic modelling of musical rules is used to infer the three layers

of rhythmic structure from acoustic signals – tatum, tactus, measure. The features

used in the model are similar to a multi-band onset detection function described

Section 2.2. The tatum, beat and measure bars are estimated based on a series of

observations given a set of prior rules on the rhythmic structure of the music. A

beat tracking system based on particle filtering was presented in [Hainsworth, 2004].

The system was shown to be accurate on a wide range of audio signals, although

its implementation is complex and computational cost of the algorithm may not be

appropriate for real time implementation.

For interactive systems, a beat tracker should be computationally efficient, able

to tap along live musical audio, and follow rapid tempo changes. Davies and Plumb-

ley [2004] described an algorithm for efficient causal beat tracking of musical audio.

Further improvements of the algorithm were proposed in [Davies and Plumbley,

2005]. We describe here this algorithm and its software implementation in real-time

[Davies and Brossier, 2005].

4.2 A context dependent algorithm

The algorithm we describe here is based on the onset detection methods seen in

Chapter 2. With a signal sampled at fs = 44100 Hz, the onset detection is
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computed on N = 1024 points phase vocoder with a hop size of M = 512 samples.

The onset detection function is then peak-picked using our adaptive thresholding

operation defined Eq. 2.12, and observations from the past 6 seconds are kept

in a buffer. These 6 seconds, corresponding to 512 frames of 512 samples, are

required to detect slow beat periods, with at least two beat locations in the buffer.

To evaluate the periodicity of the detection function, its autocorrelation function

(ACF) can be computed. To improve the accuracy of the beat period measurement,

several peaks in the ACF can be evaluated. The standard ACF, defined in Eq. 3.5,

gives less weight to shortest lags. To facilitate the estimation of the beat period

across multiple peaks of the ACF, we use the unbiased autocorrelation, which gives

equal weights to contributions of different time lags:

r̂D[l] =
1

|l −N |

N−1∑
n=0

D̂[n]D̂[n− l], (4.1)

where D̂[n] is the peak picked detection function, as defined in Eq. 2.13, and l the

time lag in steps of 512 samples. The scaling factor |l − N | is used to lift up the

contributions of longest lags, as opposed to the standard autocorrelation r(l) defined

in Eq. 3.5. An example of unbiased autocorrelation profile obtained using Eq. 4.1 is

shown in Figure 4.1. The lag l, in detection function samples can be converted to

tempo value in beats per minute (BPM) using the relation lbpm = (60fs)/(lM),
where M is the hop size and fs the sampling rate of the signal.

The location of the period peaks in the ACF does not depend of the alignment

of the beat locations to the audio signal, or beat phase, since the autocorrelation

is shift invariant. Using a bank of comb filters is thus an efficient way of finding

location of period peaks in the ACF: each filter matches a given lag and searches

for several peaks evenly spaced in the ACF. Searching for four consecutive was

experimentally found to give successful results [Davies and Plumbley, 2005]. The

comb filter resulting in the most energy corresponds to the lag of the function.

Equal weighting of the ACF may also causes issues where very short or very long

lags are detected as the best matching candidate. To favour the detection of beats

within realistic time lags, a weighting can be applied prior to the comb-filtering. The

weighting of the ACF should match tempo values larger than 40 BPM and smaller

than 250 BPM, given the inverse relation between lag and tempo. A perceptually

motivated weighting is constructed using the Rayleygh distribution function:

Lw[l] =
l

b2
e−

l2

2b2 , (4.2)
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Figure 4.1: Example of autocorrelation function used for causal beat period detec-
tion. Top raw: current buffer of signal waveform, representing about 6 s of music.
Middle raw: spectral difference onset detection function after dynamic thresholding.
Bottom raw: autocorrelation function computed on the onset function according to
Eq. 4.1.

where a value of b = 48 detection function samples for the Rayleygh parameter

gives the strongest weight to lag values around 60 samples, which corresponds to

a tempo of 107.6 BPM, according to the above conversion formula. In the upper

left plot of Figure 4.3, the Rayleygh distribution obtained for values of b, ranging

from 30 to 50 frames of 512 samples, are shown. The slower the tempo is, the less

probability it is given, so that a tempo of 90 BPM is preferred to one of 45 BPM.



Chapter 4. Tempo tracking 108

-80
-60
-40
-20

 0
 20
 40
 60
 80

 100

-1000 -800 -600 -400 -200  0

time (df samples)

Onset detection function

onset detection

-1

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250

lag (df samples)

Period detection: Rayleygh weighting

comb filterbank
period

Lw

-200

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250

lag (df samples)

Period detection: Gaussian weighting

comb filterbank
period

Lgw

-10

 0

 10

 20

 30

 40

 50

 60

 70

-200 -100  0  100  200

time (df samples)

Phase detection and predicted beats

Agw
df

phase
predicted

Figure 4.2: Example of causal beat period detection. Top raw: past window of onset
detection function (origin at present time); Second raw left: Rayleygh weighting of
the comb filter output (initial model); Second raw right: Gaussian weighting of the
comb filter output (context-dependant model); Bottom raw: phase detection and
predicted beat locations (origin at present time)

Very short lags are also given less weight, so that a tempo value of 90 BPM will

tend to be selected by the system rather than 180 BPM.

After the time lag between two consecutive beats has been found, the phase

alignment is found by cross correlating a train of impulses to the detection function.

An exponential weighting is applied to the original function to favour the detection
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Figure 4.3: Probability distributions for the two state model beat tracking. Upper
line shows the initial state model: Rayleygh distributions for the tempo lag (Eq. 4.2)
and phase distribution functions for various lag candidates (Eq. 4.3). Bottom line
shows the context dependent distributions for lag (Eq. 4.4) and phase probabilities
(Eq. 4.5).

of the most recent events:

Aw[n] = e−
n log 2

τ . (4.3)

Given the phase value and the beat period, beats can be predicted up to the length

of the autocorrelation function, about 1.5 s. To improve the continuity of the

beat tracking algorithm, a context dependent model was developed [Davies and

Plumbley, 2005]. After three consistent beat candidates have been found, the

system enters an alternative mode, or state, which takes into account the past

beats to refine the prediction of the following ones. A new weighting function is

used to search for best matches in the ACF within a Gaussian distribution around

the predicted lag:

Lgw[l] = e
−(l−τ)2

2σ2 , (4.4)
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where τ is the last predicted beat period and σ a variance empirically set to τ/8
to allow for some deviation. Similarly, the phase alignment of the beat location is

derived from the detection function but using a Gaussian distribution:

Agw[n] = e−
(n−γlast)

2

2σ2 , (4.5)

where γlast is the last predicted beat location. An example of output obtained

from the comb filters after Rayleygh and Gaussian weightings, Lw in Eq. 4.2 and

Lgw in Eq. 4.4, are given in Figure 4.2. While the Gaussian weighting of the comb

filter output prevents the beat period from switching between metrical levels, the

Gaussian weighting, Agw defined in Eq. 4.5 and shown in Figure 4.2, applied on

the detection function for the phase alignment, prevents the system from switching

from on-beat to off-beat.

The switch between the two states, initial hypothesis and context dependent

model, is made according to the following criteria. If consistency has been found

across the past three lags, the system enters the context dependent model. The

continuity criteria is |2τr(i)−τr(i−1)−τr(i−2)| < σ2 with τr the time lag obtained

from the Rayleygh weighted ACF and σ defined in Eq. 4.4. Lag candidates are now

given by the context dependent model, which adapts to small variations across

time. Both models are used simultaneously, and their consistency is evaluated:

|τr(i)−τg(i)| < σ2. When a new lag candidate τr is found to differ from the context

dependent model τg, the system uses the Rayleygh weighting model as a new set

of hypothesis until sufficient continuity has been found. This mechanism favours

continuous tracking of the beat period, while allowing abrupt tempo changes.

4.3 Evaluation

An implementation of the two-state model algorithm was written in C, based on

the onset detection functions described in Chapter 2. Experiments with the real

time implementation showed how the Rayleygh distribution plays an important role

in the final output, as it drives the behaviour of the context model by setting the

initial parameters of the Gaussian weighting. The parameter b proves to be a useful

“handle” to manually correct the system where it tracks the tempo at the wrong

value. Another important parameter is the phase of the beat locations. As the beats

are predicted, the results can be played slightly in advance or slightly delayed, which

is an important feature for real time accompaniment systems. Simple mechanisms

for manual corrections of off-beat tracking situations can also be employed, for
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instance using a “tap button” which users can tap at the correct beat period.

4.3.1 Performance metrics

Issues in evaluating beat tracking systems have been described in [Goto and Mu-

raoka, 1997]. The primary performance metric is proposed to be the ratio of the

longest continuous correctly tracked segment to the total length of the signal. This

metric has been used in recent beat tracking studies [Klapuri, 2003a, Hainsworth,

2004, Davies and Plumbley, 2005]. Beats locations are considered as correct if there

phase is found within ±17.5% of the annotation and if the tempo value corresponds

to the annotations within ±10% of deviation. In order to cope with the ambiguity

of the beat tracking task, four cases are identified: continuity at the correct metrical

level (CML cont.); the total number of beats at the correct level, with the conti-

nuity constraint relaxed (CML total); continuity where tracking can occur at the

metrical level above or below the annotated level (AML cont.); and total number

of beats allowing for ambiguity in metrical level (AML total). One issue with this

metric is that a single missed beat may cause the CML to drop from 100% to 50%.

Evaluating the results of the human annotations (Table 4.2) gave poor CML scores,

suggesting the continuity criteria are too strict.

A straightforward application of a tempo tracker is the estimation of the average

tempo period of a musical piece. The task of automatic tempo extraction was

evaluated at the second edition of the MIREX contest [Gouyon et al., 2006, MIREX,

2005c] using a metric specifically designed to take into account the ambiguity of

beat tracking. The evaluation was made on 144 sound files, each annotated by 40

listeners. Algorithms were tested according to several tasks: ability to extract one

or both most salient beat periods; ability to extract the correct phase alignment of

one or both beat periods.

4.3.2 Experiments

We have tested the real time implementation using the database gathered by

Hainsworth [2004], which consists of 222 annotated files of about one minute du-

ration each, sampled at 44100 Hz and separated in different categories: rock/pop,

dance, jazz, folk, classical and choral. Details of the database are provided in

Table A.8.

Table 4.1 shows the performance of our algorithm for the BPM extraction ob-

tained on this database and detailed per music genre. As expected, the best perfor-
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mances are obtained with files in genres likely to contain percussive attacks (Jazz,

Pop and Dance), with more than 80% of the files annotated with the correct tempo,

and little octave confusion. On the other hand, the algorithm performance drops on

music genres where percussive attacks are less likely to be present (Classical, Solo

classical, Choral) and more octave confusions occur.

Table 4.2 shows the results obtained on the database by different algorithms

with different beat tracking algorithms. The causal implementation of the algorithm

does not perform as accurately as the non-causal implementation but represent a

significant improvement from the BeatRoot algorithm.

Our C implementation was also evaluated along with several other approaches

during the MIREX 2005 tempo extraction contest [MIREX, 2005c]. To simulate

the extraction of the two most salient tempo periods, as required by the contest,

beat locations were extracted using the causal algorithm and the average period

was selected as the most salient period. To provide to the evaluation algorithm of

the contest with a complete output, the second most salient period candidate was

selected arbitrarily to half or double of the most salient period: half when the first

tempo period is found above 110 BPM, and double when found below. A sum-

mary of the results obtained for the various algorithm are reproduced in Table 4.3.

The computational costs obtained show an important difference in the different

approaches. Most systems analysed the 140 sound files in 1000 to 3000 seconds,

while our causal implementation took 180 seconds to compute the whole database

extraction. This confirms the very low computational complexity of this implemen-

tation, which mostly consists of the phase vocoder used for the onset detection

function, with only a small level of additional cost from the autocorrelation and the

tempo detection model.

4.4 Summary

We have reviewed several algorithms for beat tracking of music signals and described

a real time implementation of a causal beat tracking system, based on the multi-

comb autocorrelation of an onset detection function. This algorithm is efficient

and able to predict beat locations from a variety of percussive and non-percussive

music signals. Although the non-causal implementation proved to be more reliable

than our causal implementation, the real time system achieves encouraging results,

especially on percussive signals.

The evaluation of beat tracking system has been approached, and a number
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category Files # Oct. down Correct Oct. up
classical 23 13.04 56.52 8.70

choral 7 0.00 28.57 14.29
solo classical 22 0.00 9.09 22.73

big band 9 33.33 66.67 0.00
jazz 31 9.68 87.10 0.00
pop 38 2.63 85.21 0.00

dance 40 2.50 85.00 10.00
rock 30 0.00 63.33 10.00
folk 18 0.00 61.11 5.56

other 4 0.00 75.00 25.00
Total 222 4.95 67.12 7.66

Table 4.1: Performance results of our tempo extraction realtime on the database
Table A.8, with details of the different categories: Classical, Choral, Solo classical,
Big Band, Jazz, 1960’s Pop, Dance, Pop/Rock, Folk, and Other.

Beat CML CML AML AML
Tracker Cont. (%) Total (%) Cont. (%) Total (%)

State model (causal) 46.7 53.9 58.4 69.3
State model (non-causal) 54.8 61.2 68.1 78.9

Dixon Beatroot 25.1 30.9 46.2 59.6
Klapuri non-causal 55.7 62.4 71.2 80.9

Klapuri causal 52.3 59.7 65.2 69.3
Listener annotations 52.3 80.0 56.3 86.6

Table 4.2: Evaluation metrics (see Section 4.3.1) for different algorithms: Causal
and non-causal State switching model [Davies and Plumbley, 2005], Dixon’s Beat-
root [Dixon, 2001b], Hainsworth’s Particle filter [Hainsworth, 2004], Klapuri’s prob-
abilistic modelling in causal and non-causal modes [Klapuri, 2003a] and listener
annotations. Database details are given in Table A.8.

of issues are raised by this process. In order to better understand the rhythmic

structures in music, several applications would benefit from higher level elements

such as the time signature and the bar locations.
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Score At Least Both At Least Both Mean Abs. Run-
Participant (std. deviation) One Tempo Tempi One Phase Phases Diff. time (s) Machine

Alonso, David, Richard 0.689 (0.231) 95.00% 55.71% 25.00% 5.00% 0.239 2875 G
Uhle, C. (1) 0.675 (0.273) 90.71% 59.29% 32.14% 7.14% 0.222 1160 F
Uhle, C. (2) 0.675 (0.272) 90.71% 59.29% 32.86% 6.43% 0.222 2621 F

Gouyon, Dixon (1) 0.670 (0.252) 92.14% 56.43% 40.71% 7.86% 0.311 3303 G
Peeters, G. 0.656 (0.223) 95.71% 47.86% 27.86% 4.29% 0.258 2159 R

Gouyon, Dixon (2) 0.649 (0.253) 92.14% 51.43% 37.14% 5.71% 0.305 2050 G
Gouyon, Dixon (4) 0.645 (0.294) 87.14% 55.71% 48.57% 10.71% 0.313 1357 G

Eck, D. 0.644 (0.300) 86.43% 53.57% 37.14% 5.71% 0.230 1665 Y
Davies, Brossier (1) 0.628 (0.284) 86.43% 48.57% 26.43% 4.29% 0.224 1005 R

Gouyon, Dixon (3) 0.607 (0.287) 87.14% 47.14% 36.43% 6.43% 0.294 1388 R
Sethares, W. 0.597 (0.252) 90.71% 37.86% 30.71% 0.71% 0.239 70975 Y

Davies, Brossier (2) 0.583 (0.333) 80.71% 51.43% 28.57% 2.14% 0.223 180 B0
Tzanetakis, G. 0.538 (0.359) 71.43% 50.71% 28.57% 3.57% 0.295 7173 B0

Table 4.3: Summary of evaluation results from the MIREX 2005 Audio Tempo Extraction contest [MIREX, 2005c]. Non-causal (1)
and causal (2) implementations of the two states tempo tracking algorithm are indicated in bold font. The details of the other
algorithms can be found in [MIREX, 2005c].



Chapter 5

Note modelling

Based on the pitch and onset annotations we have obtained from the techniques

described in the previous chapters, Chapter 2 for temporal segmentation and Chap-

ter 3 for pitch detection, we are now looking for ways to combine the spectral

and temporal observations, and group them into musically meaningful annotations.

Specifically, we want to identify notes in a MIDI like format, with their precise

beginning and end, their velocity, and their pitch.

We give here an overview of several methods designed to extract note objects

from musical audio. We then describe two approaches we have implemented. The

evaluation of the performance of these methods is then tackled. Different metrics

for the evaluation of the note extraction task are described, and our implementations

are tested against a database of various musical scores.

5.1 Introduction

The extraction of note objects is an important step towards the understanding

of higher-level structures in music. Direct applications of such extraction include

audio to score transcriptions, score following and query by performance. A variety

of systems have been proposed for monophonic [Monti and Sandler, 2002] and

polyphonic transcription [Bello et al., 2002, Klapuri et al., 2001, 2002]. Recent

transcription systems use an explicit note modelling technique to extract MIDI like

notations from speech [Ryynänen and Klapuri, 2004] and music [Ryynänen and

Klapuri, 2005]. In these, hidden Markov model (HMM) is used for each note to

model the likelihood of a note given a set of features extracted from the acoustic

115
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signal. A second Markov model is used to estimate the likelihood of transitions

between notes given a set of musicological priors. In this second model, for instance,

the probability of third and fifth intervals can be set to higher values than the

probability of a second interval.

Real time estimation of the attributes of the note object, such as the fundamen-

tal frequency and its temporal boundaries, involve a trade-off in the time frequency

domain. Onset times are precise for percussive onsets but less well defined for

smoother attacks. The observation of pitch following onset will be affected by the

presence of transients in percussive or breathy attacks, but easier on bright timbres

with a sharp harmonic structure. Here we concentrate on the problem of labelling

notes with a pitch as quickly as possible after the note onset, on solo recordings.

We describe a system for the low-latency characterisation of note events [Brossier

et al., 2004a], based on the information provided by our note segmentation algo-

rithm, described in Chapter 2, and on the estimation of the fundamental frequency,

described in Chapter 3. The system is designed to achieve robust labelling of notes

on a large variety of solo musical recordings, in various acoustic environments. In

Section 5.3, different methods to evaluate the performance of the note extraction

task are reviewed, and the results of our experiments we ran to evaluate our imple-

mentation.

5.2 Real-time oriented approaches

One way to think about the task of extracting note events is to consider the ex-

traction of a MIDI score corresponding to the observed audio signal. Real time

implementation of a note modelling system is made complex by the requirements

in terms of latency and computational costs. Modelling notes in real time consists

in deciding of Note-On MIDI events, where the note start with a given pitch and

velocity, within a short latency. Errors in the estimation of onset times and funda-

mental frequency may happen, but the combination of the temporal analysis and

the pitch estimations can help maximising the success of the operation. As a first

approach, a set of simple rules are expressed as follows: the detection of temporal

onsets triggers the creation of a new note event; after a consistent pitch value has

been found, the note event is labelled and can be sent; if a new pitch value is con-

sistently found, a new note event is created. The main issue remains the estimation

of a consistent pitch value after the onset of the note and during its transient.
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Figure 5.1: Detail of the synchronisation of the different modules used in parallel
for note estimation: silence gate, onset detection function, onset peak picking and
pitch detection modules use different window lengths and must be synchronised.

Median based approach To evaluate a consistent note pitch candidate in a small

number of frames after the onset, we have choosen to compute the median over

the candidates that appear in the frames after the onset:

Pnote = median(Pq, Pq+1, ..., Pq+δ), (5.1)

where δ is the number of frames considered for the pitch decision and will determine

the total delay of the system. The first q frames are not considered, so as to

take into account the delay between both pitch and onset phase vocoders and

optionally ignore early pitch candidates. This parameter significantly increases the

delay, but allows spurious detections in the attack of the sound to be ignored.

Another potential source of error occurs when the amplitude of the different partial

change within the note: octave or fifth errors may then occur. The details of the

different modules operating simultaneously is given in Figure 5.1. To limit the delay

of the decision, we can use a varying δ depending on the context: short after the

onset, with only 3 frames – 33 ms; long during steady states, up to 7 frames.

When three frames have occured after the last detected onset, δ is incremented
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Figure 5.2: Emission and transition probability matrixes used in the hidden Markov
model for temporal pitch smoothing using Viterbi decoding.

by 1 for each consecutive frames. This mechanism allows us to have a variable

measure of consistency, based on a short time delay at the beginning of notes,

and a longer delay during the steady state. The parameter δ allows short spurious

detections to be ignored, including jumps to harmonic or sub-harmonic components.

The computational cost of the search remains low as the moving median can be

computed as a simple sort algorithm.

Viterbi decoding approach Another technique commonly used to determine the

most likely prediction of future observations given a set of past observations is the

use of the forward Viterbi algorithm. This dynamic programming technique involves

the use of hidden Markov models [Rabiner, 1989]. A simple prototype can be built

to compute the most likely pitch path given a set of observed pitch values. The

observations are encoded as pitch values in MIDI note number, rounded to the

nearest integer, and silences are encoded with 0. To each observation corresponds

one hidden state. Fixed probabilities distributions are used in the Markov chain:

initial probabilities of all states are equal. The self-transition probability is set to a

very high value to reflect the steady states, while the transition to other states are

kept low. The emission probability is built to reflect a low probability of emission of

notes within a small weight given to semi-tones interval, and a higher probability for

2 (second), 4 (third), 7 (fifth) and 12 (octave) intervals. The probability matrixes

are shown in Figure 5.2.

Given this probability model, the forward Viterbi algorithm can compute the

likelihood of a sequence of observations and give a prediction for the next observed
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Figure 5.3: Example of pitch track obtained using the multi-comb algorithm, with
and without smoothing using the Viterbi decoding approach with 3 and 5 past
observations. Jitter and noise are removed, gaps are filled. The sound file is the
one used in Figure 2.2.

state. Experiments were run using sets of 3 to 5 pitch observations. As can be

seen in Figure 5.3, the pitch track can be significantly smoothed by the Viterbi

algorithm, with short gaps within notes being filled and a limitation of the spurious

candidates in the transients. Although the results are encouraging, the method has

a serious drawback for real time implementation: the computational complexity of

the algorithm is in O(NM2) with N the number of observations and M the number

of states. Computing the likelihood of more than a hundred note states for a single

frame, typically with a duration of 11 ms, would not apply easily to a real time

system. About 2.5 minutes were required to compute the predictions of the 10 s

long sound plotted in Figure 5.3 using our Python implementation of the Viterbi

decoding algorithm.
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5.3 Evaluation

We describe existing approaches to the evaluation of transcription systems, and the

technique we used to estimate the performance of our note identification system.

We then describe the method we have followed to construct an evaluation database

which contains several scores played by different instruments. Evaluation results we

obtained on this database are discussed.

5.3.1 Performance metrics

Several proposal have been made for the evaluation of transcription system. The

edit distance, also called Levenshtein distance [Crochemore and Rytter, 1994], is

commonly used to measure the distance between two polyphonic scores. This dis-

tance counts the number of operations needed to transform one string into another;

three operations are allowed: edition, insertion and deletion. This measure gives a

good idea of the overall robustness of a monophonic transcription and the amount

of work needed to obtain a correct score from the computed annotations. How-

ever it may not reflect the perceptual annoyance caused by spurious notes, and its

extension to polyphonic signals is complex.

Alternatively, a measure of the precision and recall of the algorithm can be

based on the number of notes correctly defined, the total number of notes found

in the original and in the extracted score. These metrics are easier to extend to

polyphonic transcription and overall faster to compute. An additional measure, the

overlap ratio, was proposed in [Ryynänen and Klapuri, 2005] to reflect the temporal

correctness of the transcription: the measure is defined as the ratio of the time

delay where correctly extracted and original notes overlap to the length occupied by

both notes:

overlap ratio =
min{offsets} −max{onsets}
max{offsets} −min{onsets}

, (5.2)

where onsets and offsets are two pairs of extracted and original times. This

measure is useful in the context of real time extraction, as it will be affected by the

delay of the system.

For our experiments, we chose to measure the number of notes correctly detected

within a time tolerance of 50 ms, similarly as in Chapter 2 for the onset evaluation,

and within half a semi-tone, like was done in Chapter 3 for the pitch evaluation.

Notes evaluated as correct will have been found within these two tolerance criteria,
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both in term of temporal localisation and pitch value.

5.3.2 Score database

To evaluate the performance of the note modelling in realistic monophonic situa-

tion, simulations need to be run on real recordings. Several notes may overlap each

other, and the presence of reverberation in the recording may affect the overall per-

formance. Two approaches are available to obtain the ground truth of the samples:

annotate manually a small collection of recordings, or obtain the exact MIDI score

of the sound sample. The first process is a long task, which can be semi-automated

to help the alignment of the manual annotations. However, cross-validation of the

database is time-consuming and although MIDI files created from real recordings are

available for instance in the Real World Computing (RWC) database [Goto, 2004],

the MIDI scores are not aligned to the audio signal. Another approach is to obtain

directly the MIDI score that generated the recorded sound sample, either by record-

ing an instrument equipped with MIDI captors, or by synthesising the audio directly

from a MIDI score. Databases of piano recordings with corresponding MIDI scores

have been gathered [Bello, 2003], but these recordings were made to the evaluate

polyphonic transcription system. A drawback of generated files is that the quality of

MIDI rendered files often too mechanical, especially the one that have been created

from a score rather than from a performance. The rendering depends not only on

the MIDI file, but also on the synthesis engine. Modern software solutions such

as Timidity can achieve perceptually relevant results. This technique facilitates the

automation of the benchmarks, and endless combination of audio samples can be

generated from just a few MIDI files. The process also has the advantage of a

perfect alignment of both the actual note onset and offset times, which allows for

a precise estimation of the system delay.

We used MIDI files from the Mutopia Project [Mutopia project, 2000], which

aims at gathering a collection of public domain music sheets. The collection used for

our experiments contains nine different scores, instrument solos or leads extracted

from chamber and symphonic music (see Section A.4 in Appendix A for detailed

score references and availability). Each file was rendered with various instruments

in order to evaluate the influence of the timbre on the pitch extraction algorithm.

The most realistic samples have been selected to render the MIDI files. Waveform

rendering from MIDI files was done using Timidity [Toivonen and Izumo, 1999], a

state-of-the-art MIDI to PCM conversion utility. Timidity provides a command line

interface that can convert MIDI files using different sound synthesis formats (GUS,
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Figure 5.4: Example of typical note segmentation errors: detected events are shown
in filled box, the original score is outlined. Extract from Partita in A minor for Solo
Flute, J. S. Bach, BWV 1013, 1st Movement: Allemande.

PAT, SoundFont2). To enhance the rendering of the MIDI files, some amounts of

reverberation and chorusing were added, enough to be perceptually noticeable on

each instrument.

5.3.3 Experiments

A test bed for the evaluation of our system has been implemented. Audio waveforms

are generated using MIDI files and analysed through our note labelling program. The

evaluation consist of the comparison between the original MIDI score and the list of

candidate event detections we obtain, both against pitch and start time. NOTE-ON

events are extracted as a pair of MIDI pitch and start time. If the detected event

corresponds to an existing note within a tolerance window of length εt (ms) and

with the correct MIDI pitch rounded to the nearest integer, the event is labelled

as a correct detection. Incorrect detections can be characterised by their frequency

error (e.g. octave or fifth interval errors), and their temporal error (e.g. doubled or

late detections). An example of automatically retrieved score is given in Figure 5.4.

In this piano-roll like graph, the original notes are drawn in solid lines, the detected

events in filled black squares. The plot illustrates various types of errors, including

octave and fifth jumps.

Using a fixed set of parameters for the onset detection and the pitch tracking,
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Figure 5.5: Correct note estimation results for different values of δ in Eq. 5.1, the
number of pitch frames the decision is taken on, and for different instruments. The
onset detection threshold α in Eq. 2.12 is fixed at 0.300.

we have estimated the number of notes which were correctly labelled for different

values of δ in Eq. 5.1. The results obtained with different instruments are given in

Figure 5.5 show the strong dependency of the number of pitch candidates required

to obtain a solid note labelling and the nature of the instrument playing. The sharp

attacks of the harpsichord or the clarinet lead to correct note results after only

4 frames, a delay of 44 ms. Most harpsichords have two strings tuned with one

octave difference, leading to transcription errors. The SoundFont sample used for

the harpsichord is simplistic and contains only one string, as opposed to the real

recording seen in Figure 3.1. Soft attacks such as the flute will require up to 10

observations, a 110 ms duration, to obtain consistent note candidates. The breathy

attacks are causing spurious pitch detections. The decrease of the performance

found for the violin is explained by the presence of spurious octave or fifth errors

within long steady states. In this case, a large δ and thus a strong criteria of

consistency in pitch did not help the results.

The success of the median filter is improved by when δ is odd, because the

number of pitch correct candidates is likely to be higher than the number of spurious

pitch observations when the total number of candidates is odd. This explains the

irregular profile of the curves in Figure 5.5. Overall results show that more than 80%
of the notes could be correctly labelled within 110 ms. However for all instruments
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except flute, more than 84% of the notes can be retrieved within 45 ms.

We have tested successfully our software implementation (Chapter 6) in real

time on an AMD Duron 700 MHz, where the process was using about 50% of the

CPU, as well as on other machines.

5.4 Summary

We have presented and evaluated a new method for the determination of note

objects within short latencies. The algorithm is based on the simultaneous analysis

of temporal (Chapter 2) and spectral (Chapter 3) features. The pitch estimation

runs in parallel with the onset detection functions, onset peak-picking and silence

detection, and can run along other analysis such as tempo tracking (Chapter 4).

We have implemented the median based note estimation method as a software

program able to run in real time, and we have evaluated the performance and the

delay of our approach. Preliminary experiments were also made using a Viterbi de-

coding approach, with promising results despite a high computational cost. Details

of our software solution and examples of integration with other applications are

given in Chapter 6.



Chapter 6

Software implementation

Software applications and computer systems are evolving quickly, and drawing a

state of the art in the field of computer science is not an easy task. The topic

of computer music programming is the subject of several text books [Roads, 1996,

Miranda, 2002, Zoelzer, 2002]. Some of the issues specific to the implementation of

Computational Audio Scene Analysis systems have been discussed in [Scheirer, 2000,

Amatriain, 2004, Tzanetakis, 2002]. Programming environment, graphical user

interfaces, or protocols for musical data storage and exchange: different tools can

create and process musical audio in different ways and for different applications. To

understand how automatic annotations of musical data could be helpful to computer

users, and illustrate some of the approaches adopted in the design of computer music

programs, we first review several of these applications. Choices for the architecture

of our system are made in view of their integration into other existing software

environments. Guidelines for the design of an automatic annotation system are

given. We then describe the approach we have followed in the implementation of

our annotation system, the aubio library. In Section 6.4, examples of integration of

this system are gathered.

6.1 Computer music environments

Programming music applications has attracted a large interest in the past decades.

Computer music covers a large field of applications, and drawing clear boundaries

in this field is not a trivial task. For the purpose of this document, we distinguish

different approaches followed in the design of computer music solutions: program-

125
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ming environments and prototyping frameworks, targeted for research and creation;

graphical applications designed to be intuitive to the end-user; protocols and for-

mats, designed to exchange and store musical data.

Studying existing source code of musical programs helps understanding how

these applications are constructed, and when this source is available, contributors

can submit modifications, improvements and extensions to these programs. Open-

source is thus a guarantee of flexibility and durability for a software solution and

is therefore useful to the research community. Most of the software solutions we

describe here are available under an open-source licence, although the names of

some of the most famous commercial applications are also given.

6.1.1 Programming environments

Textual programming environments have pioneered the world of computer music in

the late 1950’s with several generation of the MUSIC-N languages. The different

generations of this language rely on two grammars: the orchestra on one hand,

where elementary functions or opcodes can be assembled to define instruments and

effects; the score, on the other hand, for the control of these functions. Latest im-

plementations of this software such as Csound 5 [Boulanger, 1998] include high level

operations such as spectral modification and MIDI control. The Csound paradigm

was also implemented as part of the MPEG-4 Structured Audio standard [Scheirer,

1998a], with the Structured Audio Orchestra Language (SAOL) and Synthesis Lan-

guage (SASL) [Scheirer and Vercoe, 1999].

Another programming language for sound synthesis and processing, SuperCol-

lider, was developed in the mid 1990’s [McCartney, 1996]. The SuperCollider envi-

ronment consists of a sound synthesis server, scsynth, and a language interpretor,

sclang, which can parse a syntax derived from the Small-Talk object oriented lan-

guage. Snippets of code written for sclang can be modified, interpreted and executed

on the fly by the scsynth server, even when other instructions are already executed

by scsynth, in a complete multi-task and multi-channel fashion. The SuperCol-

lider environment contains several features, including functions for spatialisation

and spectral processing, and control of external MIDI devices.

Chuck is a recent multi-platform and open-source programming language for

real-time audio synthesis, composition, and performance [Wang and Cook, 2003,

Wang et al., 2004]. The Chuck environment allows the management of timed

structures at multiple time rates, with fine control over different parameters of the

system. The Synthesis Tool-Kit (STK), a library for physical modelling of musical
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instruments, is integrated within the Chuck language, so that different instruments

can be created and controlled seamlessly.

Csound, Chuck and SuperCollider are all environments adapted for the analy-

sis, synthesis and composition of music in a real-time fashion. They have active

communities of users, using them to teach, understand and create music with com-

puters. A common paradigm to all these environments is the separation between

signal rate and control rates: processing units or modules generate audio at the

desired sampling rate, and their parameters are evaluated at a slower rate. This

separation is helpful conceptually for the user, who can generate complex signals

within a minimal amount of code. The distinction between signal and control also

contributes to the efficiency of the sound rendering engines, by avoiding the eval-

uation of all parameters at each sample and optimising the scheduling of different

computations.

6.1.2 Graphical interfaces

Visual programming environments such as PureData (PD) [Puckette, 1996a,b] or

Max/MSP [Matthews et al., 2006] can be described as a graphical implementation of

the MUSIC-N paradigm. Opcodes are represented as boxes with inputs and outputs

and connected with virtual “wires”. Two types of signal flow coexist: control and

audio. The audio is computed at fixed block sizes, and the control event are polled in

a scheduling queue. To extend basic functionalities of the PureData environment, a

system of dynamically loadable plug-ins, also called externals, is used. Some of these

externals include advanced functionalities such as onset detection (bonk~) and pitch

tracking (fiddle~) [Puckette et al., 1998], which are used for instance to gather

expressive informations from a live performance for the control of a generative music

algorithm [Dobrian, 2004].

Computer music users are often more familiar with intuitive applications allowing

the visualisation and editing of sound files. Graphical applications for audio pro-

cessing have been adopted by composers, musicians and sound engineers. A typical

audio workstation supports the editing of multiple tracks and allows the acquisition

and manipulation of both audio and symbolic data. Several modules provide exten-

sions to the host application. Virtual instruments or sound effects, these plug-ins

can be reused across different applications. Both instruments and effects produce

new sounds; their parameters can be controlled using MIDI-like control signals.

Programs such as Pro Tools, Cubase and Logic Audio Pro are currently some of

the most widely spread commercial applications. All these solutions understand the
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VST plug-in standard interface, which comprises both a signal processing effects

and virtual instruments.

Advanced audio editors include ways to add label tracks along the waveform.

For instance, Audacity [Mazzoni et al., 2000] uses label tracks which contain anno-

tated time stamps to ease the selection of segments – see for instance Figure 6.7.

To include new functionalities, Audacity uses the Nyquist interface, a programming

language derived from the LISP (LISt Processing) functional language and oriented

towards sound processing. This language can be used to create new sound process-

ing, analysis or synthesis modules. A description of Nyquist is given in [Miranda,

2002]. Praat [Boersma et al., 1992], another powerful sound editing application,

was initially designed for the annotation of spoken and sung voice. Praat features a

collection of analysis routines and graphical panels to visualise spectral data. Data

plots can be saved directly in the PostScript format for integration in research publi-

cations. This research tool has shown to be useful as a composition tool for the syn-

thesis and manipulation of voice [Miranda, 2002, Chapter 6]. WaveSurfer [Beskow

et al., 2000] is an open-source audio editor designed as an extensible framework

for analysis and visualisation. WaveSurfer has been used for research purposes, for

instance to extend it with an automatic beat pattern recognition interface [Gouyon

et al., 2004], based on the command line tool Beat Root [Dixon, 2001a]. In addition

to their plug-in interfaces, Audacity, Praat and WaveSurfer also provide label tracks

to annotate sound files. However, while the integration of advanced features into

these applications would benefit their users, only few means of generating these

annotation are readily available in these solutions.

6.1.3 Research frameworks

Recently, a number of research group have made available software frameworks for

processing audio signals are available. CLAM (C++ Library for Audio and Music)

[Amatriain, 2004, Amatriain et al., 2001] provides an object oriented framework for

the construction of graphical user interfaces around signal processing algorithms.

Complex applications using different processing techniques have been constructed

using this framework [Gómez et al., 2003a, Gouyon et al., 2004].

Another open-source software project, Marsyas (Music Analysis, Retrieval and

Synthesis for Audio Signals), includes signal analysis routines, visualisation tools,

and machine learning algorithms [Tzanetakis and Cook, 1999, Tzanetakis, 2002,

Tzanetakis et al., 2002b], The Marsyas framework was used for different research

experiments, such as beat tracking [Tzanetakis et al., 2002a] or musical genre clas-
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sification [Tzanetakis and Cook, 2002]. Both systems are open-source and designed

with flexibility in mind. Examples of real-time applications are provided, showing

their ability to work in real-time. With visualisation functions and graphical ele-

ments, these systems are also constructed as self-consistent entities, in which the

developer can build graphical applications writing a minimal amount of code and

reusing existing elements.

6.1.4 Storage and exchange of meta-data

Establishing strong standards is important for the computer musician to facilitate

the exchange of data across applications. A plethora of file formats and protocols

has been developed in and around computer music applications. Lack of support

for some of these formats can limit the usage of one or several applications. Com-

mon languages must be defined to convey musical signal and control parameters

across different software environments. We can distinguish three main approaches

in the design of these standards, according to their aim: storage formats, to store,

compress and reuse musical data; transmission protocols, dedicated to exchange of

data between applications; storage of annotation data, to facilitate the exchange of

annotations across applications.

Storage

WAVE and AIFF formats are some of the most widely used formats to store raw

audio data on hard disks. These formats are complex, and several variations exist,

which complicate their implementation. In addition, several dozens of alternative

formats can be encountered on computer music systems. To address the task of

reading, writing and converting from and into these file formats, dedicated software

libraries have been designed to access the signal data inside these files. For instance,

libsndfile is used by numerous audio related open-source projects and supports more

than a hundred different file formats [de Castro Lopo, 2006b]. Additionally, in the

last decade, the use of compressed audio data has rapidly spread across the Internet,

and consecrated with the success of peer-to-peer exchange software. Formats such

as MPEG-I Layer 3 (MP3) [Brandenburg and Bosi, 1997] and Ogg Vorbis [Xiph.org,

2005] are now integrated in embedded audio systems such as in-car audio or portable

devices. Similarly, dedicated software solutions exist to encode and decode these

formats.
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Transmission

To fulfil the demanding needs of diverse music creation processes, efforts have been

made to standardise protocols for transparent communication across applications.

One such standard is the Musical Instrument Digital Interface, MIDI, which in 1982

started being developed. The MIDI protocol provides a multi-track, polyphonic

and real-time standard to store and exchange symbolic data, and has been rapidly

adopted by musicians as a standard [Loy, 1985]. However, MIDI has also shown

its limitations, notably with limited bandwidth, fixed time quantisation and finite

number of control parameters [Moore, 1988].

The Open Sound Control (OSC) protocol was later developed and addresses

most of these limitations [Wright and Freed, 1997]. OSC is designed for communi-

cation amongst computers, sound synthesisers and other multimedia devices. The

protocol is based on modern networking technologies and following the URI (Uni-

versal Resource Identifier) scheme for naming conventions. Symbolic and numeric

data can be sent across the network to different machines; features include high

resolution time stamps, multiple recipients of a single message, possible grouping

of simultaneous events. This protocol has already been widely adopted [Wright

et al., 2003]; it is used for instance in SuperCollider (Section 6.1.1) to exchange

data between the interpreter client and the sound synthesis server, and PureData

externals (Section 6.1.2) for OSC support are available.

Annotation

In addition to MIDI, several formats have been designed to represent musical data. A

text-based format derived from the LATEX syntax was designed for Lilypond [Nieuwen-

huizen et al., 1996], a program for typesetting sheet music. This format has been

reused by several applications for graphical score editing – Denemo, Rosegarden,

NoteEdit. MusicXML [Good et al., 2004] is another recent format dedicated to

store musical scores in a portable and flexible way. The format, whose specifi-

cations are based on the eXtensible Meta Language (XML), is now supported by

commercial applications – Finale, Sibelius – as well as open-source applications –

Rosegarden, NoteEdit. To store complex and multi dimensional symbolic and nu-

meric data, another format was required with the recent developments of complex

musical applications. A standardisation effort has been made through the MPEG-7

specification [Manjunath et al., 2002], an ISO standard for the storage and exchange

of multimedia meta-data. For interoperability and storage purposes, the MPEG-7

focuses on the issue of the storage format by defining a specific XML Document
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Type Definition (DTD). The norm also provides test samples and code examples, to

reproduce the extraction process with other implementations, from audio to MPEG-

7 annotation files. Open standards such as Music XML and MPEG-7 are important

to facilitate the storage and exchange of complex musical data over the network

and across applications.

Accessing existing and new sound file formats is likely to be an ever going issue,

which in itself is only remotely connected to the extraction of meta-data from

raw audio signals. We have seen that several implementations and formats exist

to address different applications. We have given an overview of a selection of

applications, describing their concepts and some details on their implementation.

A myriad of musical software applications are being designed, and not all fit all

purposes. Users experiences could be enhanced with advanced functionalities based

on the automatic extraction of annotations. Different software environments could

benefit from advanced functionalities using a software solution designed for the

robust extraction of annotations. Reciprocally, a centralised software solution could

be enhanced by being integrated in various environments and used for different

purposes.

6.2 Design requirements

Chafe et al. [1982] identify a number of “musical constructs” and possible ways

of integration in software environments for the musician. These constructs include

onset and beat location, pitch track and piano-roll scores. In the preceding chapters,

we have discussed the difficulty of extracting some of these musical constructs from

musical signal. Although piano-roll scores are commonly used to represent symbolic

data such as MIDI, little software solutions exist to extract control and symbolic

data from raw audio signals. The aim of our software library is to provide these

functionalities to a large number of host application, and with a minimal number

of requirements to ease their integration in existing software solution.

An approach well known to UNIX programmers is to design small programs to

address a simple task. Different programs are then assembled together to form

complex systems. This approach is described by Raymond [2003] as the “rule of

composition : design programs to be connected with other programs”. Open-

source programming framework such as CLAM or Marsyas are interesting for re-
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search and educative purposes and allow rapid prototyping. However they are not

always adapted for integration within other software environments, since they in-

clude elements of graphical interface. We have chosen to adopt this UNIX approach

and create a system dedicated to the extraction of annotations, and designed to

be integrated in other software platforms. Hence, we do not consider the tasks

of accessing the raw signal and storing the extracted annotations as part of this

software solution.

6.2.1 Automation and evaluation

As we target this software for its integration into other environments, we have to

consider its role: on one side, the system aims at providing optimal results in a

given context; on the other side, to test and improve the system, we must evaluate

these results against manually annotated data. In parallel to the set of programs to

extract annotations, evaluations routines should be deployed, in order to measure

and discuss the results. This is also important to reproduce the benchmarks on

diverse machine architectures.

The system can be separated in three components: the extraction routines, the

evaluation routines and the evaluation data. For several reasons, annotated sound

files do not explicitly belong to the software package. Primarily, copyright issues

on the sound file used prevent the redistribution of these files. Moreover, the code

to extract and evaluate annotations is more likely to change than the annotated

databases. Finally, the system should be able to run evaluation benchmarks on new

databases, and access different meta-data storage formats.

We have hence identified two major parts in our software system. The first

part, the extraction routines, should be optimised for efficiency and robustness. As

such, these extraction routines can be seen as a “pipe” transforming audio signals

into annotations. In order to facilitate its integration, this pipe should be designed

with efficiency and generality in mind. Writing this part of the system in a low-level

language such as C or C++ is important for the efficiency of the system. Minimising

the dependencies of these routines against third-party softwares will also facilitate

their integration.

Contrarily, the evaluation routines do not have such constraints, and although

it can be advantageous to run benchmarks efficiently, there is no need to restrict its

number of dependencies or to write it in a low-level language. The major constraint

the evaluation stage must fulfil is to evaluate the extraction exactly as would be

done from an external application. Access to each levels of the system is important
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for evaluation purposes, for instance to evaluate the influence of a parameter or the

presence of pre-filtering. Therefore, the evaluation routines should be flexible and

tightly bound to the extraction routines. However, both extraction and evaluation

stages should be kept independent to ensure the correct behaviour of the extraction

stage.

6.2.2 Guidelines

We give here guidelines for the implementation of a software system for automatic

annotation of audio. Some of these considerations are conclusions derived from the

precedent chapters. Others are more general recommendations for scalability, often

derived from the UNIX philosophy [Raymond, 2003].

One of the most important feature for a software solution to be used in the

most varied conditions is its portability: the system should run on common oper-

ating systems, such as Windows, Mac OS X and Linux, and on various processor

architectures, for instance x86, Power-PC, or SPARC. This approach favours the use

of well established coding standards, such as ANSI C, and discourages the use of

architecture specific optimisations, such as assembly routines, which are optimised

for a given processor and in most cases non-portable. This also means that the soft-

ware should be independent of the different audio drivers used on each operating

systems.

One of the most important aspect to consider when designing our system, which

aims at transforming audio signals into semantics and control signals, is how its in-

puts and outputs will connect to other systems. As we want the annotation functions

of our library to be embedded in other software environment, one of the goal of the

software library is to remain reasonably small, and with limited dependencies: the

system should be small and easily extensible. This constraint implies the software

system input and outputs that are independent of the environment in which it is

used: regardless of the audio input, which is also important for portability reasons,

and regardless of the type of the output needed. For instance, the functions of the

library should be usable on sound files and on live stream coming from a micro-

phone. Moreover, it should be just as easy to create OSC packets from the results

of the annotation functions than to output MIDI streams or store these results in

the MPEG-7 file format.

So as to optimise and reuse algorithms, the different parameters of these al-

gorithms should be accessible to the end user, as opposed to hard-coded values.

Unlike an approach often adopted in the design of graphical interface, where some
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of the settings are hidden for clarity, we voluntarily follow an approach whereby all

parameters are exposed and can be set by the user. This approach guarantees that

the system is programmable and facilitates its integration into other systems.

We have seen that our software solution should be portable, by running on

various hardware and operating systems, extensible, by reducing the scope of the

software to their role and leaving support for various inputs and outputs outside

the library, and programmable, by giving access to a maximum of parameters. In

addition, a few more guidelines can be added as features of the system. These are

not requirements but features which could benefit all implementations.

We have focused on the real-time extraction of annotation. In order to work in

real-time, the algorithms should output the descriptors of a time-frame as soon as

this time frame is over. In practice, we have algorithms that output a result within

several milliseconds after this time-frame – 15 ms being already long for instrumental

interactions. On the other hand, we have seen that predictive algorithms such as

the tempo tracking algorithm in Chapter 4 could output the results before the

corresponding event occurs in the signal. Indeed, the delay of the system is tightly

dependent on the algorithm used. Regardless of this delay, the important constraint

is to keep the system causal, so that live sound streams can be processed just as

well as sound files. The causality is a warranty of limited memory usage of the

algorithms, because no information has to be kept until the end of the sound file.

For the same reasons of limited memory usage, the causality constraint also favours

speed optimisations.

As discussed in Chapters 2, 3, 4, and 5, we have chosen to put a strong accent

on the computation efficiency of the algorithm. In practice, we want to minimise the

number of operations spent to compute the results of a frame, which can be done

not only in the design phase of the algorithms, but also in their implementation.

For instance, constants used to compute a descriptor throughout the audio stream

should be computed once, and only required computations should be executed over

each time frame. Desktop computers are nowadays fast enough to compute several

hundreds of operations within very short periods [Freed et al., 1993]. Because the

system is targeted for integration into other environments, the constraint is not

only for the algorithms to run on such computers, but to run fast in a minimum of

processor operations.

Another feature of the system is the reproducibility of the results. This is impor-

tant for many environments. For instance, in live installations, the system should

respond similarly to similar events, regardless of the time at which they occur. When

annotating a database of songs, the analysis of two identical songs should result
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in the same annotations, even when one of them is preceded by a few seconds of

silence. In practice, this time-invariance is not trivial to achieve, in particular for

algorithms based on windows of samples, as opposed to sample-by-sample, which

is the case of most of the algorithms we have studied.

6.3 Aubio: a library for audio labelling

We have just described our recommendations for the design of a software library

dedicated to the automatic annotation of musical sounds. We have developed such

an implementation which aims at addressing all of these recommendations. This

library is named aubio, and is available online [Brossier, 2003] at the following

address:

http://aubio.piem.org/

The aubio library aims at providing a set of high level music signal processing

functions to use as building blocks for these user interfaces. Similarly to mathemat-

ical libraries, libsamplerate [de Castro Lopo, 2006a] for digital resampling, FFTW

for fast Fourier transforms [Frigo, 1997], or graphical toolkits for the creation and

manipulation of graphical elements, the aubio library provides tools for the detection

and manipulation of high level audio objects, The aim of this library is not directly

to provide user interfaces. Instead, annotations obtained using aubio are to be used

in varied applications, graphical editor, musical search engines, or live audio effect.

For efficiency and portability, we have chosen to write the aubio library in ANSI

C, a well established standard. Several music software environments are written in

C, such as PureData or Max/MSP. Arguably, C++ code can also run efficiently

on modern computers and has been adopted by various projects – SuperCollider,

Marsyas, CLAM. In several cases, object-oriented programming languages are con-

venient for programming computer music applications [Roads, 1996]. Most notably

the notion of processing and generator units are easily implemented with class inher-

itance mechanisms. However, memory management in C++ is partly automated,

which makes it difficult to control the exact amount of memory occupied by the

process. Conversely, all memory allocations and deallocations must be explicit in

C, which may often lead to smaller memory usage than that of C++ programs.

However, drawing general rules would be hasty, and the choice of language also

reflects the preference of the author.

http://aubio.piem.org/
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typedef struct _fvec_t fvec_t; typedef struct _cvec_t cvec_t;
struct _fvec_t { struct _cvec_t {
int length; int length;
int channels; int channels;
float **data; float **norm;

}; float **phas;
};

Figure 6.1: Definitions of the two elementary vector prototypes used in aubio. Real
valued data are stored in an array of floats of size channels × length. Complex
data are stored in two float arrays for norm and phase.

struct _aubio_task_t {
fvec_t * state;
uint_t threshold;
uint_t parameter;

};

Figure 6.2: Example of structure prototype used to define object in the aubio library.
The structure holds all the data required to execute a given task. Parameters and
vectors are used to hold in memory past data and computation space.

Data structures and function prototypes

The two basic object types used in the aubio library to store vectors of complex and

real valued data are listed in Figure 6.1. These two structures define multidimen-

sional vector objects to manipulate data in both temporal and spectral domains.

These objects fvec t and cvec t are used inside aubio to pass data between func-

tions. The size and channel number are stored within the structures, so that the

function can operate on objects of different sizes.

For each task defined in the aubio library, a structure is defined in the source file

typedef stuct _aubio_task_t aubio_task_t
aubio_task_t * new_aubio_task(int bufsize, int hopsize);
int aubio_task_set_param(aubio_task_t *o, float param);
void aubio_task_exec(aubio_task_t *o, fvec_t *in, fvec_t *out);
int del_aubio_task(aubio_task_t *o);

Figure 6.3: Definitions of typical function prototypes used in aubio to manipulate
the structure described in Figure 6.2. Functions allows for the creation, execution,
modification and deletion of a given routine.
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typically as listed in Figure 6.2. This structure contains all the data and parameters

required for the computation of the task and which needs to be stored across

consecutive executions. Function prototypes to use this structure are defined in the

corresponding header file, typically as listed in Figure 6.3. All function prototypes

contain the word aubio in order to prevent name-space pollution. In the example of

Figure 6.3, the execution function, aubio task exec, accepts input data in a vector

of floats fvec t * in and store the results in another vector out. Another function

aubio task set param can be used to change the parameter task->param after

the object creation and between two consecutive executions. Functions to create

and destroy an object are prefixed with new and del. All memory allocation and

freeing operations take place respectively in these two functions, avoiding memory

management calls during the execution of a task.

The programming interface we have chosen in aubio is a classic implementation

of simple object models in C, used in several softwares, such as for instance PureData

or some Csound implementations. Using this simple prototyping model, stateful

objects can be created, executed, and deleted optimally. These objects behave

like modules: simple modules operate simple tasks, such as Fourier transforms

or filtering, and complex objects can be created by assembling several elementary

modules into a new module.

Library organisation

Additional steps are followed to favour the modularity of these functions and sim-

plify their prototypes. Firstly, not all operations demand the storage of temporary

data or the allocation of additional memory space. For instance, computing the

autocorrelation function or the exhaustive search for a maximum value in a vector

are stateless operations. When possible and efficient, such functions are imple-

mented without the use of a stateful structure. Most of these stateless functions

are gathered into a collection of convenience routines and reused throughout the

library.

Secondly, the main parts of a complex process are divided into smaller parts. For

instance, the onset detection task consists of three modules: phase vocoder, onset

detection function and peak picking. The output of the onset detection functions

can be used as the input of the peak picking and the beat tracking routines. The

output of the phase vocoder, which uses the FFT object, is also reused by spectral

domain pitch detection routines. This would allow for instance to reuse spectral

representations already computed by the host application, as is done for instance
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onsetdetection

energy hfc phase specdiff complex mkl kl

peakpicking beattracking

pitchdetection

schmitt fcomb mcomb yin yinfft

phasevoc fft

tempo
notes

onset pitch

Figure 6.4: Diagram of the relations between different objects in the aubio library.
Task objects tempo, notes, onset and pitch, reuse objects for pitch detection and
onset detection functions.

in Marsyas when reading MPEG-I Layer 3 files (MP3), which are already stored as

spectral data. Figure 6.4 shows a simplified diagram of different aubio modules.

Maintenance and extensions

These functions are to be used directly in C and C++ applications. Their prototypes

have been chosen to be flexible yet efficient. Changing these prototypes would

require changing accordingly the source code of programs using these functions.

To prevent such binary incompatibility issues, the library is compiled with a version

number, and multiple versions may coexist on the same system. To minimise the

amount of code in the library, FFTW [Frigo, 1997] is used for FFT computations,

optimised for different architectures and operating systems. libsndfile is used to read

and write sound files in a portable way, and libsamplerate for efficient resampling

of audio signals [de Castro Lopo, 2006a,b].

Programs written in C code may be efficient, but their maintenance requires

rigour and costs compilation time. Interpreted languages minimise this cost and

allow rapid prototyping. Several of these languages, such as for instance Perl or



6.4. Integration examples 139

Python, are commonly used in the research community. Other researchers might

prefer compiled languages such as C++ or Java. To allow the integration of the

aubio routines directly from languages other than C or C++, a description of the

aubio application interface was written for the Simple Wrapper Interface Generator

(SWIG) [Beazley et al., 1995]. This programs generates the files required to compile

extensions for more than ten different languages such as Java, Perl and Python.

6.4 Integration examples

Along with the shared library of C routines described in Section 6.3, two types of

command line tools are available: programs to analyse audio signals and extract an-

notations, and programs to evaluate the performance of the extraction algorithms

against annotated databases. In addition, we have integrated the aubio library in

a number of the applications reviewed in Section 6.1.2. We describe here how we

integrated aubio in some of these graphical user interfaces: external for PureData,

plug-ins for Audacity and WaveSurfer, integration into FreeCycle, CLAM Annota-

tor and Sonic Visualiser. The complete source packages of these applications are

available, as detailed in Appendix B.

6.4.1 Command line interface

The first series of command line is useful for the user to annotate one or multiple

files. They come with a number of options and can be used from external applica-

tions. Each tool extracts one or more of the four descriptors we have described in

the precedent chapters: onsets in Chapter 2, pitch in Chapter 3, tempo in Chapter 4

and notes in Chapter 5.

aubiocut outputs time stamps of note onsets in second on the console. When

used with the option --beat, aubiocut attempts to detect beat locations instead.

The buffer and hop sizes can be set with the parameters --buffer and --hop.

The name of the sound file to analyse is passed with the parameter --jack. If

no --input argument is found, the application attempts to launch the application

in real time mode by connecting to the JACK audio server. In this mode, one

audio input and one audio output are created. The input port receives the signal

to be analysed, while the output ports plays the sound of wood-block each time

an onset is detected in the input signal. Other interesting arguments include the

--threshold option which is used to set the peak picking threshold parameters,

the --silence parameter to set the silence gate, and the --mode function, used to
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select which detection function should be used. Functions currently available are:

complex domain, phase based, spectral difference (specdiff), kl, mkl, energy

and dual. A list of modes separated by commas can be passed to --mode to run

several detection functions simultaneously. Another interesting option is --plot,

which produces a plot of the sound sample, the detection function and the detected

peaks. When used together with --output, the plot is saved in a file, either as

a Post Script, a Portable Network Graphics (PNG), or a Scalable Vector Graphic

(SVG) format, depending on the extension of the output passed as the argument to

--output – virtually all terminals supported by Gnuplot are available [Williams and

Kelley, 1986]. The plot in Figure 2.2 for instance was obtained using the following

command line:

aubiocut --no-onsets --mode hfc,complex,specdiff,phase,mkl \

--plot --input misterio_loop.wav --outplot misterio_loop.ps

Finally, when run with --cut a list of onset or beats is extracted in a first pass,

then refined looking for local energy minima and zero crossing to slice at optimal

locations. One file is created for each event detected with the name of the original

file followed by the time stamp of the event in the file. The slices obtained are ready

for use in software or hardware samples.

The program aubiopitch extracts pitch candidates from a sound file. The com-

mand line options available are similar to that of aubiocut, with --buffer, --hop

and --input. The --mode option accepts here the following keywords: fcomb,

mcomb, schmitt, yin and yinfft, which correspond to the different pitch algo-

rithms evaluated in Chapter 3. Options specific to aubiopitch include --units,

which accepts the arguments midi and freq and change the frequency unit of

the output; --maxpitch and --minpitch determine the range of frequency out

of which no frequency estimates should be found. Similarly as for aubioonset,

aubiopitch supports multiple arguments for --mode, separated by commas, and

the --plot option. The plot in Figure 3.7 was obtained using the following com-

mand line:

aubiopitch --mode schmitt,fcomb,mcomb,yin,yinfft \

--minpitch 277 --maxpitch 880 --plot \

--input opera_fem2REF.wav --outplot opera_fem2REF.ps

These command line programs can also be used to play the results in real time

using the JACK audio layer, a low-latency audio server for Linux and Mac OS X,

and could be extended to output sound to other audio drivers.
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#! /usr/bin/python
from aubio.bench import bench
from aubio.tasks import onset
mybench = bench(onset,’/path/to/annotated/onsets/’)
mybench()

Figure 6.5: Example of Python script used to evaluate the performance of the onset
extraction routine with default parameters. The bench class runs the onset task
class on every file found in the specified directory.

While several functionalities are available from these two programs, aubiocut

and aubiopitch, several other programs are available in the source code. Addi-

tionally, these examples can be used to write custom programs.

6.4.2 Evaluation interface

The second series of programs included in aubio are the ones used to run the

benchmarks whose results were described in previous chapters. They can be used

to evaluate the influence of different processing steps and the performance of new

extraction methods.

Python [van Rossum et al., 1991] is an object oriented language with a syntax

similar to C. We have chosen this language to write the evaluation scripts. Each

module written in C has its own corresponding object in Python. The different ex-

traction routines are gathered along a class template, which defines the initialisation

and parametrisation steps, the execution, and the evaluation. Additionally, func-

tions to plot the results are written using the Python interface to Gnuplot [Williams

and Kelley, 1986]. In parallel of these tasks, another type of class is derived to run

benchmark over a collection of annotated files. A benchmark can thus be written as

in Figure 6.5. This example is a complete program which evaluates the performance

of the onset extraction task using default parameters. Here, the call to mybench

first runs dir exec to extract the features from sound files; then dir eval to eval-

uate this data against manual annotations; finally, the results of the computation

are printed on the console and plotted. When needed, each function of the template

bench class can be redefined to operate differently, for instance to change the order

of the executions or the way evaluated data are gathered. Similarly, for each tasks,

pre-defined extraction and evaluation routine can also be changed, for instance to

extract the data using an external command line, to read the ground truth from

another file format, or to alter the default plotting function.
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Figure 6.6: Using aubioonset~ in PureData to drive a video camera. The micro-
phone adc~ sends signal to the onset detector aubioonset~, which in turn sends a
bang to the camera pdp v4l. Each picture taken is sent to the pdp xv object and
displayed on screen.

Several programs based on the python interface were used to generate some

experimental results and figures included in the previous chapters. In Chapter 2,

the results of the onset evaluation (Figure A.8) were created using bench-onset.

The pitch evaluation on the monophonic and polyphonic database in Chapter 3

were done by bench-pitch program, while the results of the pitch evaluation in

Figure 3.9 were created by the program bench-pitch-isolated. To facilitate the

reproduction of the results we have discussed in these chapters, the complete source

code used to run the evaluation benchmarks is available along the C library in the

aubio source package, as detailed in Appendix B.

6.4.3 PureData objects

The main functionalities of aubio have been bound to the PureData programming

environment [Puckette, 1996a,b]. A PureData external – or plug-in – is included in

the aubio source tree and gives access to different objects: aubioonset~ for onset

detection, aubiotempo~ for tempo tracking, aubiopitch~ for pitch detection, and

aubiotss~ for transient vs. steady-state separation. The source code of these

objects are simple wrappers around the aubio functions, written in C.

Simple yet powerful applications can be built within PureData. Using the pdp

external, audio signal and control objects can be combined with video capture,

display and processing objects. Figure 6.6 shows a screen-shot of a PureData patch

using the pdp video externals [Schouten et al., 2002] and aubio. The onset detection

object, aubioonset~, processes sound from the sound-card input, adc~ (Audio-to-
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Digital Converter). Each time an onset is detected, aubioonset~ sends a control

message, bang, to the video camera pdp v4l, which in turn takes a picture from a

video device. The image is then displayed on the screen, pdp v4l.

This simple patch takes a picture from a video camera each time an onset is

detected on the microphone input. The first impression created by this system is

often that of camera taking shots at random times, but when users start understand-

ing how the camera is controlled, the installation can be amusing. An interesting

artefact occurs when the onsets are triggered by the light switch of a room: after

switching the light off, the screen displays an image of the room in the light; when

switching the light back on, the screen displays the black pitched room. This is

explained the delay of the camera, which can be expected to be longer than 30 ms

at 30 image per second, and even longer when white balancing and image averaging

is used to stabilise the image.

Several audio and video applications could be built using the different objects

provided by aubio. More functionalities are to be added, including the possibility of

changing analysis method, and the addition of several parameters. At this stage,

these objects are already useful to test the performance of these functions and

listen to their results in real time. The system was tested on a Pentium III Mobile

800 MHz: running simultaneously aubiopitch~ (yinfft), aubioonset~ (complex),

and aubiotrack~, the processor load was about 55%, leaving enough processing

power to draw detected features on the screen.

6.4.4 Audacity and WaveSurfer plug-ins

Audacity and WaveSurfer are advanced graphical audio editors with features such

as track labels. Using the plug-ins extensions of these two software packages, we

have added support for the onset and tempo detection. The Nyquist analysis plug-

in written for Audacity works as follows: first, it saves the current sound selection

to a temporary file, then runs aubiocut on this file. The time-stamps printed

by aubiocut automatically generate a label track. The graphical interface of the

Nyquist plug-in and an example of label track are shown in the Audacity screen-shot

of Figure 6.7. Minor modifications to the Nyquist languages were required to add

support for file saving and external commands. A similar approach was adopted to

implement an aubio plug-in in WaveSurfer. The WaveSurfer plug-in architecture is

written in Tk, a cross-platform graphical toolkit based on the Tcl scripting language,

and provides functions for writing to disk and executing external commands. These

implementations are not optimal, especially for very long files, since they require
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Figure 6.7: Using aubioonset as an Audacity plug-in. a. Analysis menu where
the aubio plug-in appears. b. Aubio onset detection settings dialog box. c. Label
track automatically generated and marking detected onsets. d. Manually annotated
label.

saving the file to disk. A direct integration of the aubio functions into the Nyquist

or Tk language would require slightly more code maintenance, but increase the

performance.

6.4.5 Freecycle

Freecycle is a graphical interface to segment audio files at onsets and edit these

segments. All of the onset extraction functions included in aubio are accessible

via the configuration menu. The threshold for the peak picking of the detection

function can be set using the horizontal slider next to the transport control buttons.

The toolbar at the top of the window also contains various informations about

the current sample, including the detected BPM. A time envelope can be applied

on each extracted segments, changing the attack, decay, sustain and release parts

of the segments. The main waveform display shows the location of the extracted
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Figure 6.8: Screen-shot of Freecycle [Viceic, 2006] showing a waveform sliced at
detected onset times. Different onset detection function can be selected from the
configuration menu, and the toolbar contains a slider to set the peak picking thresh-
old.

onsets; each can be moved along the time-line, or locked to prevent future edition

using the small lock symbols at the top of the label lines. The segments can also

be swapped in different combinations, and each combinations can be stored in one

of six configurations. Pressing the numbered colour circles in the toolbar recall one

of each configuration. At the bottom of these lines is found the keyboard, which

can be used to assign each segment to a range of MIDI values. Freecycle can also

export the segmented sound in a number of formats, including SoundFount and

AKP, the AKAI Sample Format used in hardware samplers.

6.4.6 Sonic Visualiser and CLAM Annotator

Sonic Visualiser is an application for viewing and analysing the content of sound

files developed recently at the Centre for Digital Music [Cannam et al., 2006]. The

aim of this graphical interface is to give the user visual and textual informations
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Figure 6.9: Screen-shot of Sonic Visualiser [Cannam et al., 2006], with three dif-
ferent panes displayed. Each pane contain several layers. Top: waveform and beat
tracking layers. Middle: spectrum view, beat locations and pitch layer. Bottom:
onset times, onset detection and notes.

about music signals. Obviously, this type of interface is interesting to visualise

the results of our annotation routines. In a way similar to that of WaveSurfer,

the interface supports multiple panes. Additionally, each pane may display several

layers of data, representing different data in different ways. Transparency is used

to visualise multiple layers at a time. In addition to built-in functions optimised for

efficient representation of time and spectral domain data, feature extraction can be

done using a specific plug-in interface, VAMP. A particularity of this interface is

its support for multidimensional data and labels, which permits the use of complex

meta-data formats within Sonic Visualiser.

To use the aubio features directly from Sonic Visualiser, several VAMP plug-ins

were written that extract annotations using the aubio routines: onset detection,

onset detection functions, pitch tracking, beat detection and notes modelling can

now be used directly as Sonic Visualiser layers. Parameters for different algorithms
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Figure 6.10: Screen-shot of the CLAM Annotator, a graphical application to visu-
alise pre-extracted features. In this configuration, segments of detected chords are
overlayed on the waveform display (top), and two chord visualisation modules show
the tonality probability of the piece (bottom).

are to be adjusted in a dialog box, containing drop-down lists of different onset

or pitch algorithms, peak-picking and silence thresholds, maximum and minimum

pitch values. An example of a Sonic Visualiser screen-shot is displayed in Figure 6.9.

Towards the top of the window, the first pane contains the default layer with a wave-

form display, and an additional layer to display the extracted beat locations. The

middle pane contains a spectrum layer, the beat locations and the pitch detection

output. The last pane at the bottom of the window shows detected onsets, onset

detection functions and extracted notes.

The CLAM Annotator is another application to visualise extracted features and

edit annotation data [Gouyon et al., 2004]. The application, built using the CLAM

framework, proposes advanced functionalities to annotate and visualise music sound

files. A screen shot of the CLAM Annotator graphical user interface is shown

Figure 6.10.
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6.5 Summary and perspectives

We have given an overview different computer music environments, illustrated by a

number of computer music software applications and formats. The overview aimed

at highlighting different approaches in the design of these environments: program-

ming languages dedicated to analysis and synthesis of audio signals, graphical user

interfaces designed to facilitate the manipulation of music signals, or storage formats

and protocols to store or exchange musical data.

We have then described the design of the aubio library, a system for automatic

extraction of high-level features from audio streams. The library contains routines

for the extraction of audio descriptors on one hand, and scripts for the evaluation

of these descriptors on the other hand. The extraction routines were designed in a

causal fashion to facilitate their integration not only in real-time systems, but also

in various user interfaces. Describing implementation details is somewhat difficult,

and the reader is invited to consult the source code of the library to understand how

the different modules are constructed and assembled. The complete source code of

the aubio library is available on the project website [Brossier, 2003] – see details in

Appendix B. A detailed documentation is also provided, generated using Doxygen

[van Heesch et al., 1997] from the comments included in the source code.

The aubio library has been integrated with new and existing software. Command

line tools are provided to extract annotations; results can be played or printed on

the standard output, to be stored in text files or further processed with other tools

reading from standard input. Scripts for the evaluation of the different descripors

are also provided so that users can easily reproduce the results discussed in this

thesis, including the graphs to present these results. The different routines have

been deployed in the PureData programming environment. Writing a PureData

external for aubio was an important test for the library, since its requirements are

typical of a real time environment. The announcement of these objects was made on

the PureData mailing lists, and several users reported using them. The integration

of aubio into graphical user interfaces has been described. Audio editors such as

Audacity, Wavesurfer or Freecycle can benefit from the library functionnalities, such

as automatic segmentation at onset and beat locations. The routines are also

accessible from applications specifically designed to visualise audio annotations,

such as Sonic Visualiser and CLAM Annotator. We hope that the aubio library will

continue to grow and improve in the future, and become a widely adopted solution to

integrate advanced annotation featuress into various music software environments.



Chapter 7

Conclusion

The achievements of this research are summarized here, followed by a brief outline

of the different chapters of the thesis. A discussion on possible lines for future

investigations is then proposed.

Thesis contributions

During this PhD research, we have been studying methods for the extraction of

musically relevant symbols from audio signals. A variety of techniques for the

extraction of musical annotations have been studied, implemented, and evaluated.

Some of the significant contributions of this thesis are as follows:

• method for causal peak picking of onset detection functions (Chapter 2)

• new pitch detection algorithm, based on a modification of YIN (Chapter 3)

• real time implementation of a new beat tracking algorithm (Chapter 4)

• system for online extraction of note candidates (Chapter 5)

• implementation of several of the reviewed annotation algorithms (Chapter 6)

• implementation of different methods for performance evaluation (Chapter 6)

Summary

We have reviewed a number of existing and novel approaches to annotate musical

audio streams, implemented some of these approaches in a real time fashion, and
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evaluated these implementations against several databases of real recordings. In

Chapter 1, we gave an overview of some of the characteristics of the human listening

system and we reviewed a number of techniques to process audio signals.

Chapter 2 included the review of several methods for the extraction of onset

locations, the beginning of sound events. Several onset detection functions were

implemented and a modified peak selection technique was designed to allow the se-

lection of the onset times within a minimal delay. The robustness of these functions

was evaluated against a large database of sounds.

Chapter 3 included a definition of the pitch, the perceptual attribute associated

to frequency, and described a number of approaches to extract the fundamental

frequency from audio signals. Five different method, including a novel spectral

domain modified YIN, were evaluated on databases of isolated notes, polyphonic

recordings and monophonic recordings. Our novel approach gave the best overall

pitch accuracy, with a computational cost suitable for real time operation.

In Chapter 4, we reviewed different approaches to the extraction of tempo beats

in musical audio, and we described the details of our real time implementation of a

two-state causal beat tracking approach. The results of this method were compared

to other techniques on two different databases of manually annotated sounds.

We looked at the issue of extracting MIDI like notes in Chapter 5, where an

overview of different techniques are given, and two new methods for causal extrac-

tion of these notes are proposed. Preliminary experiments were made on sound files

generated from MIDI scores, and the results of our approach are discussed in terms

of performance and latency.

In Chapter 6, we described several types of computer music environments, and

we presented our software project, the aubio library, designed to operate in a real

time fashion. Several examples of software using our implementation were described.

The current code base of aubio is available for anyone to study and modify, and

already has several users.

Discussion and future work

Throughout this project, we have learned the importance of the evaluation of the

performance of a given task. Evaluation is the required step not only to compare

different implementations, but also to improve and optimise a single method. Using

evaluation routines on extraction algorithms, we were able to improve significantly

the performance of several algorithms. In some cases, we could also correct bugs in
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the extraction algorithms and reduce their computational cost.

For music signals, large databases of annotated data are needed to reflect differ-

ent types of music signals. The research field of Music Information Retrieval would

benefit from the construction of large databases of annotated data to improve and

compare annotation routines. The database could be publicly available, and anno-

tations gathered in a collaborative process. Strategies to improve the annotations

databases can also be envisaged. The use of perceptually weighted annotations to

reflect the annoyance caused by missed or spurious detections could be interesting.

Such weights could be collected from the listener annotating with one or more sim-

ple devices such as sliders or pressure captors. They could even be constructed from

a given measure of neural activity.

Several computations could be automated to evaluate the performance of ex-

traction routines from more points of views. For instance, the evaluation of the

robustness of the performance across different compression formats, against differ-

ent takes of a performance, or against different levels of added noise, would help

to understand how an algorithm performance degrades on different signals, and

possibly how to improve its overall performance.

As databases become large, the amount of results to process can often become

large and complex. Several strategies can be considered to enhance the statistical

analysis of these results. Visualisation tools and statistical analysis methods could

be enhanced to improve our understanding of the results of evaluations.

Such tools could be used to evaluate and visualise the performance of an ex-

traction given the result of another extraction, or given any other parameter: a

scatter plot of the detected BPM against the ground truth BPM; a histogram of

the computation time of a pitch algorithm against the duration of the sound file;

the matrix of performance variations accross different compression formats.

The aubio library can already be used to reproduce, compare and analyse results

of the extraction routines presented in this thesis, and can be easily combined with

other software tools. We hope this library will be used by the research community

to compare and enhance existing and new methods for the annotations of musical

signals.





Appendix A

Experiments details

To facilitate the reproduction of the experimental results discussed in this document,

the list of files used during the experiments of Chapter 2 and Chapter 3 are gathered

in this appendix. Additional details of the experimental results are also included.

A.1 Temporal segmentation

The name of the sound files used for the onset detection experiments of Chapter 2

are listed in Table A.1. For each sound file, three or more text files are used to store

the hand annotations.

A.2 Pitch analysis

The lists of files used in the three databases of Chapter 3 are included below. In

Table A.2 are listed the details of the files extracted from the RWC instruments

database [Goto et al., 2003]. The files were first automatically splitted using aubio-

cut (Section 6.4.1), and the slices obtained renamed to the expected note name. All

sound files were then played and compared across instruments and playing modes.

Table A.3 and Table A.4 list the files of the monophonic and polyphonic databases

obtained from the MIREX Audio Melody Extraction contest [MIREX, 2004b]. Text

files are used to store the result corresponding to each sounds.
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Categories solo drums solo brass poly pitched
Filenames acoustic10 sax celesta

acoustic11 trumpet distorted guitar
acoustic12 guitar1
acoustic1 solo plucked strings guitar2
acoustic2 berimbau harpsichord1
acoustic3 double bass pizz1 harpsichord2
acoustic4 double bass pizz2 harp
acoustic5 electric bass piano1
acoustic6 guitar piano2
acoustic7 harpsichord vibraphone
acoustic8 piano
acoustic9 sitar complex
agogos synth bass classic1
castanets classic2
claves solo singing voice classic3
electronic1 alto voice jazz1
electronic2 bass voice jazz2
electronic3 soprano voice1 jazz3
electronic4 soprano voice2 pop1
hi hat tenor voice pop2
java gourd pop3
kick solo sustained strings pop4
ped hat cello1 techno1
pig drum cello2 techno2
shaker double bass world1
surdo viola world2
tabla violin1 world3
talking drum violin2
timbales
udu solo winds

accordeon
solo bars and bells clarinet
bells flute
glockenspiel oboe
vibraphone
xylophone

Table A.1: List of files used for the evaluation of onset detection algorithms [MIREX,
2005b]. Each file is annotated by 3 or 5 different listeners. The total number of
annotation is shown in Table 2.1.
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Figure A.1: F-measure against peak-picking threshold for complex recordings.
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Figure A.2: F-measure against peak-picking threshold for polyphonic and pitched
sounds.
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Figure A.3: F-measure against peak-picking threshold for solo bars and bells.
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Figure A.4: F-measure against peak-picking threshold for solo drums.
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Figure A.5: F-measure against peak-picking threshold for solo plucked strings.

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1  1.2

F
-m

ea
su

re
 (

%
)

threshold alpha

solo_sustained_strings

 complex
 energy
 phase

 hfc
 specdiff

 kl
 mkl

 dual

Figure A.6: F-measure against peak-picking threshold for solo sustained strings.
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Figure A.7: F-measure against peak-picking threshold for solo brass sounds.
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Figure A.8: F-measure against peak-picking threshold for solo singing voice sounds.
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Figure A.9: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections
normalised over total number of annotated onsets obtained with the energy function.
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Figure A.10: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections nor-
malised over total number of annotated onsets obtained with the spectral difference
detection function.
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Figure A.11: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections nor-
malised over total number of annotated onsets obtained with the complex-domain
detection function.
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Figure A.12: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections
normalised over total number of annotated onsets obtained with the phase-based
detection function.
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Figure A.13: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections
normalised over total number of annotated onsets obtained with the Kullback-Liebler
detection function.
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Figure A.14: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detec-
tions normalised over total number of annotated onsets obtained with the modified
Kullback-Liebler detection function.
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Figure A.15: Localisation of the detections for different window and hop sizes:
2048/1024; 2048/512; 1024/512; 1024/256; 512/256; 512/128. Above: without
delay. Below: with a delay of 4 x hopsize. Histogram of correct onset detections
normalised over total number of annotated onsets obtained with the dual onset
detection function.



Chapter A. Experiments details 166

Instruments piano elecguitar vibraphone rhodes clavinet
Filenames 011pfnof 131eglff 041vihnf 021epnof 023cvnof

011pfpef 131eglfm 041vihpf 021eppef 023cvnom
011pfref 131eglfp 041vihvf 022epnof 023cvstf
011pfstf 131eglpf 041visdf 022eppef 023cvstm
012pfnof 131eglpm 041visnf
012pfpef 131eglpp 041visvf
012pfref 042vihnf
012pfstf 042vihpf
013pfnof 042vihvf
013pfpef 042visdf
013pfref 042visnf
013pfstf 042visvf

Table A.2: List of files from the RWC database [Goto et al., 2003] from which
isolated notes were extracted. Total number of notes are given in Table 3.1, exper-
iments results in Figure 3.9.

Group pop midi daisy opera jazz
Filenames pop1REF midi1REF daisy1REF opera fem2REF jazz1REF

pop2REF midi2REF daisy2REF opera fem4REF jazz2REF
pop3REF midi3REF daisy3REF opera male3REF jazz3REF
pop4REF midi4REF daisy4REF opera male5REF jazz4REF

Table A.3: List of files from the MIREX [2004b] melody extraction contest, used for
experiments on monophonic data in Chapter 3; files durations are listed in Table 3.2,
experiment results in Table 3.3.

Group pop midi daisy opera jazz
Filenames pop1 midi1 daisy1 opera fem2 jazz1

pop2 midi2 daisy2 opera fem4 jazz2
pop3 midi3 daisy3 opera male3 jazz3
pop4 midi4 daisy4 opera male5 jazz4

Table A.4: List of files from the MIREX [2004b] melody extraction contest used for
experiments on polyphonic data in Chapter 3; files durations are listed in Table 3.2,
experiment results in Table 3.4.
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schmitt mcomb fcomb yin yinfft
S P C S P C S P C S P C S P C

daisy 95.07 91.13 92.07 94.33 95.51 95.55 96.36 95.33 95.53 94.40 94.10 94.12 94.47 95.84 95.87
jazz 93.38 91.04 91.16 92.35 95.01 95.23 92.35 94.49 94.83 92.45 93.70 94.19 92.45 94.62 95.03
midi 75.71 69.38 69.67 75.14 94.09 94.49 75.14 91.23 92.75 75.14 90.26 90.78 75.14 93.68 94.05

opera 70.05 23.37 27.97 69.11 52.01 53.93 70.70 48.99 51.77 69.17 37.11 39.80 69.11 56.06 57.04
pop 75.53 71.38 73.18 74.53 82.83 83.07 88.11 79.03 80.51 74.53 79.80 80.02 74.62 85.21 85.39

Total 81.33 68.46 70.03 80.41 83.89 84.45 85.79 81.71 83.02 80.46 78.91 79.69 80.49 85.09 85.48

Table A.5: Detailed results for the experiment on the monophonic database with voice/unvoiced (S), raw pitch accuracy (P) and
chroma accuracy (C); a description of the database can be found in Table A.3.

schmitt mcomb fcomb yin yinfft
S P C S P C S P C S P C S P C

daisy 3.04 12.43 15.84 0.00 80.76 83.24 0.00 76.80 83.04 0.20 73.12 79.60 0.00 72.42 79.43
jazz 10.42 7.42 13.68 2.77 60.64 63.68 0.38 54.18 58.36 2.01 61.74 71.43 0.98 70.31 75.69
midi 28.15 3.17 7.73 15.10 38.09 43.17 14.53 46.91 53.10 15.89 47.20 56.54 14.98 46.46 56.29

opera 20.08 7.40 10.12 19.03 39.63 44.17 19.08 35.97 41.94 19.20 16.00 23.52 19.14 49.12 51.85
pop 14.81 4.85 9.61 5.22 23.88 28.36 4.15 16.24 22.72 3.84 32.47 40.45 4.34 62.42 67.29

Total 14.38 6.94 11.18 7.42 47.72 51.73 6.51 45.75 51.67 6.92 45.57 53.72 6.76 59.25 65.40

Table A.6: Detailed results for the experiment on the polyphonic database with voice/unvoiced (S), raw pitch accuracy (P) and
chroma accuracy (C); a description of the database can be found in Table A.4.
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Rui Pedro Paiva Sven Tappert Graham Poliner Juan P. Bello Baseline
P C P C P C P C P C

daisy 80.61 80.61 59.68 73.00 72.63 74.08 74.23 75.41 42.63 54.66
jazz 65.91 66.19 39.14 59.05 62.98 63.39 65.09 68.83 38.86 48.42
midi 71.24 72.59 55.48 58.88 57.97 59.58 39.12 51.87 13.83 25.83

opera 38.75 39.18 33.14 47.05 29.75 30.89 28.09 38.06 44.20 52.60
pop 67.17 67.44 23.49 41.41 57.39 57.76 47.71 54.31 24.21 29.64

Total 64.74 65.20 42.19 55.88 56.14 57.14 50.85 57.70 32.75 42.23

Table A.7: Summary of the results of the MIREX 2004 Melody Extraction Contest, the polyphonic database with raw pitch accuracy
(P) and chroma accuracy (C); a description of the database can be found in Table A.4.



A.3. Tempo tracking 169

A.3 Tempo tracking

The list of files used for the experiments on tempo tracking described in Chapter 4

and whose results were given in Table 4.2 are listed in Table A.8. This database

was gathered by Hainsworth [2004]. Note that the details of the files used for the

MIREX Audio Tempo Extraction Contest, whose results were listed in Table 4.3,

are unknown as they were kept secret to the participants.

A.4 Notes modeling

The list of scores used for the annotation of our note modelling approach in Chap-

ter 5 is given. The corresponding scores can be found on the Mutopia Project

website [Mutopia project, 2000].

Six Partitas (Clavierubung part I), No. 1 by J. S. Bach (1685-1750), BWV 825,

for Harpsichord, Piano, or Clavichord, 1731. Public domain.

Six Partitas (Clavierubung part I), No. 2 by J. S. Bach (1685-1750), BWV 826,

for Harpsichord, Piano, or Clavichord, 1731. Public domain.

Six Partitas (Clavierubung part I), No. 5 by J. S. Bach (1685-1750), BWV 829,

for Harpsichord, Piano, or Clavichord, 1731. Public domain.

Partita I for Solo Violin by J. S. Bach (1685-1750), BWV 1002, 1720. Public

domain.

Octet by F. Mendelssohn-Bartholdy (1809-1847), Op. 20 for Violin, Viola and

Cello, 1825. Creative Commons Attribution-ShareAlike 2.5.

Ein Sommernachtstraum - No.5 by F. Mendelssohn-Bartholdy (1809-1847),

Op. 61, for Orchestra: Flute, Oboe, Clarinet, Bassoon, French Horn, Violins, Viola,

Cello, and Double Bass. Public domain.

Symphony nr. 18 in F major K. 130 by W. A. Mozart (1756-1791), KV 130, for

Orchestra: Flutes, Horns, Violins, Viola, Cello and Bass, May 1772. Public Domain.

Funftes Quartett, Movements 1 and 2 by W. A. Mozart (1756-1791), KV 158,

for String Quartet, 1773. Creative Commons Attribution-ShareAlike 2.5.

Concerto for Bassoon and Orchestra in B flat major by W. A. Mozart (1756-

1791), KV 191, for Bassoon and Orchestra: Horns, Oboes, Violins, Viola, Cello and

Bass, 1774. Public domain.
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Category Class. Solo Cl. Jazz 60’s Pop Rock Dance Folk
Filename 035 007 002 038 001 015 056

036 121 003 041 010 016 057
037 122 008 048 011 017 058
152 123 009 079 022 018 059
188 124 076 080 023 019 060
190 125 077 081 024 020 061
193 126 078 082 025 021 062
194 127 102 083 045 039 063
195 128 103 084 046 040 064
196 129 104 085 047 042 065
201 130 106 086 049 043 066
202 131 107 087 050 146 067
205 132 108 088 051 147 068
207 133 110 089 137 153 069
208 134 111 090 138 154 070
209 135 112 091 139 155 071
210 144 113 092 140 156 072
211 145 114 093 141 157 075
240 218 115 094 143 158
241 219 117 095 150 165 Other
242 220 118 096 151 166 073
243 221 119 097 159 167 074
244 120 098 160 168 224

Big Band 212 099 161 169 225
Choral 052 213 100 162 170
006 053 214 163 173 171
012 054 215 164 226 172
013 055 216 181 227 174
189 148 217 182 232 175
191 149 222 183 233 176
206 197 223 184 177
245 198 185 178

200 186 179
187 180
228 234
229 235
230 236
231 237

238
239

Table A.8: List of files from the tempo extraction database used for the experiments
in Chapter 4, with details of the different categories: Classical, Choral, Solo clas-
sical, Big Band, Jazz, 1960’s Pop, Pop/Rock, Dance, Folk, and Other. Complete
database details are found in [Hainsworth, 2004].



Appendix B

Additional material

These pages briefly describe the contents of the CD-ROM accompanying this docu-

ment. A copy of this material is available at http://aubio.piem.org/phdthesis/.

B.1 Aubio source code and documentation

The aubio/ directory contains the current version of the complete aubio source code

(aubio/pub/), and the documentation for the project (aubio/doc/), generated

using Doxygen [van Heesch et al., 1997]. The source code is in a compressed TAR

file, and the documentation is in the HTML format. For other revisions of the aubio

library, please see http://aubio.piem.org.

We include here samples from a discussion about the aubio objects that emerged

on the PureData mailing list (http://lists.puredata.info/listinfo/pd-list)

when Jamie Bullock asked for a tool for audio segmentation follow:

From: Frank Barknecht

Date: Thu, 26 Oct 2006 08:44:43 -0700

Subject: Re: [PD] Audio segmentation

Hallo,

Jamie Bullock hat gesagt: // Jamie Bullock wrote:

> Has anyone done any audio segmentation work in PD, along the lines of

> what is provided by BBCut for SuperCollider?

>

171
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> The sort of thing I am looking for is the ability to take a monophonic

> input (e.g. a flute), and perform on-the-fly segmentation of the audio

> into a ’database’ of notes or phrases depending on pre-determined rules.

> The segmented ’events’ would then be available for recall in an

> arbitrary order.

You may want to check out aubio for this: http://aubio.piem.org/

Aubio is a bit like improved bonk~ and fiddle~ and also works outside

of Pd.

Ciao

--

Frank Barknecht _ ______footils.org_ __goto10.org__

From: Jamie Bullock

Date: Fri, 27 Oct 2006 02:05:05 -0700

Subject: Re: [PD] Audio segmentation

On Thu, 2006-10-26 at 22:49 +0200, Frank Barknecht wrote:

> Okay, I hacked together a little patch which uses aubioonset~ to

> analyse a sample and then randomly playes back the slices. The "-help"

> file is the main patch.

>

Thanks Frank, that’s useful, in fact it is pretty much where I was

thinking of starting. I am already familiar with the aubio library (the

onset detector is very impressive even for non-percussive sounds), and I

will definitely use it.

[...]

best,

Jamie
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B.2 Sound examples

The examples/ directory contains audio examples illustrating different results ob-

tained with aubio. They are organised as follows:

• onset/ Examples of click tracks obtained in real-time using our implementa-

tion are available in this directory. Examples obtained with bonk~ [Puckette

et al., 1998] are also provided for comparison. The sounds used in Chapter 2

are also included.

• tempo/ Beat tracking examples obtained using aubiotrack on different

recordings.

• notes/ Examples of MIDI notes output obtained using aubionotes on dif-

ferent sounds.

B.3 Thesis document

The thesis/ directory contains the present document in its electronic version. Note

that this version, in the Portable Document Format (PDF), contains internal and

external hyperlinks. Colour graphics were prepared to print correctly on a white and

black printer.

B.4 Selected publications

The next pages include reprints of the following articles:

Paul M. Brossier, Juan-Pablo Bello, and Mark D. Plumbley. Real-time tempo-

ral segmentation of note objects in music signals. In Proceedings of the Interna-

tional Computer Music Conference (ICMC), pages 458461, Miami, Florida, USA,

November 2004.

Paul M. Brossier, Juan-Pablo Bello, and Mark D. Plumbley. Fast labelling of

notes in music signals. In Proceedings of the International Symposium on Music

Infor- mation Retrieval (ISMIR), pages 331336, Barcelona, Spain, October 2004.





Real-time temporal segmentation of note objects in music signals
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Abstract

Segmenting note objects in a real time context is useful for
live performances, audio broadcasting, or object-based cod-
ing. This temporal segmentation relies upon the correct de-
tection of onsets and offsets of musical notes, an area of much
research over recent years. However the low-latency require-
ments of real-time systems impose new, tight constraints on
this process. In this paper, we present a system for the seg-
mentation of note objects with very short delays, using recent
developments in onset detection, specially modified to work in
a real-time context. A portable and open C implementation is
presented.

1 Introduction

1.1 Background and motivations
The decomposition and processing of audio signals into

sound objects are emerging fields in music signal processing.
As well as allowing analysis of the content of an audio signal,
it is in tune with accepted views on the human hearing pro-
cess (Bregman 1990), and is particularly relevant to music,
where musicians and musicologists have long proposed mod-
els based on musical objects (Schaeffer 1966). Sound-object
taxonomies are at the core of novel research in music analysis
(Ellis 1996) and frameworks have been recently proposed for
the real-time transmission of object as audio content (Ama-
trian and Herrera 2002).

While many music-oriented applications require real-time
functionality, little has yet been done to address the issue of
real-time extraction of music objects, at least at levels higher
than the composition of sinusoids. Note that real-time im-
plementation is not only concerned with speeding up exist-
ing offline algorithms, but also with dealing with the con-
straints imposed by operating on a continuous, unknown and
unpredictable stream of audio data. In (Brossier, Sandler, and
Plumbley 2003), we presented a framework for the object-

∗PB is supported by the Department of Electronic Engineering at Queen
Mary University of London, and by EPSRC grant GR/54620.
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Figure 1: Overview of the segmentation process

based construction of a spectral-model of a musical instru-
ment. In the current paper, we concentrate on the temporal
aspects of this process, investigating methods for the segmen-
tation of note objects in real-time.

1.2 Temporal definition of note objects
In order to segment note objects, we need to identify the

boundaries of a musical note, namely the exact times when
the note starts – an onset – and finishes – an offset. These
boundaries can be easily identified on the temporal envelope
of an isolated musical note, that can be roughly characterised
by the well-known ADSR (Attack Decay Sustain Release)
linear approximation. However, a correct characterisation of
onsets and offsets is not trivial, and depends on the notion of
transients – transitional zones of short duration characterised
by the non-stationarity of the signal spectral content.

Algorithms intended for the detection of onsets and off-
sets rely on observing those transients, a complex task not
only because most notes are not present in isolation, but also
because the nature of these transients changes from sound to
sound – burst of energy across the spectrum for percussive
sounds, large variation of the harmonic content for tonal or
voiced sounds. This emphasises the difficulty of constructing
a unique detection function that quantifies all relevant obser-



vations.

1.3 Overview of this paper
Fig. 1 gives an overview of the process of note object seg-

mentation as implemented in this paper. First, we reduce the
audio signal to an onset detection function at a lower sam-
pling rate. Then, we perform temporal peak-picking on the
detection function to obtain a sequence of onset times. These
are combined with the output of a silence detector to produce
the onset/offset pairs that define the boundaries of our note
objects.

This paper is organised as follows: in Section 2 we ex-
plain a number of different techniques for the generation of
onset detection functions, the temporal peak-picking and the
silence detection and discuss their implementation in real-
time; Sec. 3 discusses the details of our software library and
presents quantitative results of the integration of the different
parts of the system; our conclusions are presented in Sec. 4.

2 Techniques and Implementation

2.1 Onset detection functions
For a signal x at time n, let us define X [n] as its Short

Time Fourier Transform (STFT), calculated using the phase
vocoder. Xk[n], the value of the kth bin of X [n], can be
expressed in its polar form as |Xk[n]|ejφk[n] where |Xk[n]| is
the bin’s spectral magnitude, and φk[n] its phase.

In (Masri 1996), a High Frequency Content (HFC) func-
tion is constructed by summing the linearly-weighted values
of the spectral magnitudes, such as:

DH [n] =

N
∑

k=0

k|Xk[n]| (1)

This operation emphasises the changes that occur in the higher
part of the spectrum, especially the burst-like broadband noise,
usually associated with percussive onsets, that is successfully
characterised. However, the function is less successful at
identifying non-percussive onsets – legato phrases, bowed
strings, flute.

Other methods, reviewed in (Bello, Duxbury, Davies, and
Sandler 2004), attempt to compensate for the shortcomings
of the HFC by also measuring the changes on the harmonic
content of the signal. One of such methods, known as the
spectral difference, calculates a detection function based on
the difference between the spectral magnitudes of two STFT
frames:

Ds[n] =
N

∑

k=0

|Xk[n]| − |Xk[n − 1]| . (2)

Alternatively, a function that measures the temporal insta-
bility of phase can be constructed by quantifying the phase
deviation in each bin as:

φ̂k [n] = princarg
(

∂2φk [n]

∂n2

)

(3)

where princarg maps the phase to the [−π, π] range. A useful
onset detection function is generated as:

Dφ[n] =
1

N

N
∑

k=0

|φ̂k[n]| (4)

Both approaches can be then combined in the complex-domain
to generate a target STFT value X̂k[n] = |Xk[n]|ejφ̂k[n],
where φ̂k is the phase deviation function defined in Eq. 3.
Then by measuring the complex-domain Euclidean distance
between target and observed STFT we obtain:

DC [n] =
1

N

N
∑

k=0

∥

∥

∥
X̂k[n] − Xk[n]

∥

∥

∥

2

(5)

This function successfully quantifies percussive and tonal on-
sets.

For our experiments, we have implemented the four de-
tection functions previously mentioned. Their offline imple-
mentations have proven to give good results on a variety of
CD recordings, including percussive, purely harmonic signals
and complex mixtures – pop and jazz recordings.

2.2 Temporal peak picking of note onsets
To obtain sequences of onset times, we need to process

these detection functions through a temporal peak-picking al-
gorithm. A number of peak-picking techniques have been
proposed in (Kauppinen 2002). Intuitively peak-picking is
reduced to selecting local maxima above a certain threshold
value. However, in order to successfully perform this oper-
ation in a varied set of detection functions – and on a wide
variety of signals – a number of processes are required.

Usual processes include the normalisation, DC-removal
and low-pass filtering of the original function. This is done to
maximise the success of the thresholding operation, by map-
ping functions to a limited range of values and by reducing
noisiness in their profile that may result in spurious detec-
tions.

Also, dynamic thresholding is used to compensate for pro-
nounced amplitude changes in the function profile. In this
implementation we favour the use of the weighted median of
a section of the detection function centered around the candi-
date frame:

δt[n] = λ · median(D[nm]) + δ (6)



with nm ∈ [m− a, m + b] where the section D[nm] contains
a spectral frames before m and b after. The scaling factor λ

and the fine-tuning threshold δ are predefined parameters.
However, real-time implementation imposes more severe

temporal constraints than offline implementations. Offline,
the normalisation and DC-removal processes use information
from a large time segment both before and after the current
frame, allowing the use of fixed parameters for thresholding.
In real-time we can only approximate this by using a long
sliding window – thus causing long delays. We therefore pro-
pose an alternative thresholding operation using a small slid-
ing window:

δt[n] = λ · median(D[nm]) + α〈D[nm]〉 (7)

where α is a positive weighting factor and 〈D[nm]〉 is the
mean of D[n] over the same window of spectral frames nm.
The introduction of the mean value attempts to replicate the
effects of the normalisation and DC-removal processes, with-
out the use of a long window, by using a dynamic value for
the fine-tuning threshold. Onsets are then selected at local
maxima of D[n] − δt[n]. Experimental results confirm that,
for small values of a and b, the modified threshold is robust
to dynamic changes in the signal.

2.3 Silence gate
To reject false positives detected in areas of low energy,

a simple envelope detector was built by measuring the mean
energy of a frame of the signal. When loudness of a frame
drops below a given threshold, typically −80 dB, it indicates
the note offset. Onsets detected in the middle of a silent re-
gion are discarded. The threshold parameter can be adapted
to the expected level of background noise.

3 Software library and results

3.1 Software library
We have implemented a small C library, providing device

and file abstractions for both audio and MIDI, along with a set
of processing units: phase vocoder, onset detection functions,
peak-pickers. The library makes use of modern libraries such
as FFTW and libsndfile. It also integrates with the Jack Audio
Connection Kit (JACK). We can therefore reach low latency
performances of modern Linux systems (MacMillan, Droett-
boom, and Fujinaga 2001).

A small application has been written to run segmentation
experiments both real-time and offline. This ensures that the
implementation is usable (decent overhead in real time mode)
as well as correct (fast offline performance estimation). Us-
ing an overlap of 512 samples at 44100 Hz, the system can

run on a standard desktop with a total latency of below 30ms.
This breaks down into an 11 ms delay caused by the for-
ward analysis needed for the thresholding operation (b = 1),
another 11 ms introduced by the phase vocoder buffer and
under 8 ms for JACK and hardware latencies as tested by
(MacMillan, Droettboom, and Fujinaga 2001). All the results
above can be obtained using the JACK audio server at a mere
10% of processor usage on an AMD/Athlon 700 MHz. Of-
fline testing for each function (and per set of peak-picking pa-
rameters) takes a few seconds of processing time per minute
of audio.

3.2 Experimental results
We used a set of 23 monaural audio signals, sampled at

44100 Hz and representing a wide range of music styles and
sound mixtures. In a previous step, the onset times of each
of these files were carefully hand-labeled. The proportions
of both correct and misplaced onsets were estimated by com-
paring detections against the database of 1066 hand-labeled
onsets in the test set.

All detection functions have been peak-picked using a
window of size a = 5 and b = 1 in Eq. 7, and are plotted for
values of α ∈ [0.00, 1.15]. The proportion of good detections
against false positives after peak-picking is shown in Fig. 2. It
can be seen that, in contrast to the offline case, the HFC out-
performs the complex-domain onset detection. This is due
to the effect that using short lengths of nm has on smooth
detection functions. Note that the complex-domain, phase-
based and spectral difference approaches produce functions
smoother than the HFC, as they operate on information from
more than one frame.

Fig. 3 shows results when combining onset detection with
the output of the silence gate. By using the silence detec-
tion to threshold onsets detected in low-energy conditions –
where onsets are more likely to be produced by background
noise – we obtain significant improvements on the detection
accuracy. The simple gate reduces the average number of
false positives by about 2% in all functions, while having a
minimal effect on the percentage of correct detections. The
gating level can be fine-tuned to recording conditions for bet-
ter results.

Our segmentation is intended as a first step towards the
real-time coding of note objects. Errors in the segmentation
are inevitable (as the figures show), but we can attempt to
minimise their effect on the final coded objects. In a musi-
cal scene, it is better to over-segment objects than to under-
segment them, as the estimation of attributes such as pitch
and loudness will be less affected – two notes with the same
pitch is preferable to one note with an average pitch unre-
lated to those of the original notes. Moreover, we know from
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Figure 2: Correct detections against false positives for differ-
ent α in Eq. 7 and for various detection functions.

the theory that while the HFC is well-suited for the detection
of percussive onsets, spectral-difference methods, such as the
complex-domain approach are well-suited for the detection
of tonal – non-percussive – onsets. Therefore, to maximise
the number of detections, we can combine these functions to
produce a note segmentation algorithm tailored to the require-
ments of a real-time object-based coding system.

The design of our software library, allows for the easy
implementation of various combinations. Fig. 3 (top curve)
shows the benefit of multiplying the HFC and the complex-
domain function. This combination consistently returns the
best results for the whole set, increasing the overall reliabil-
ity of the segmentation, and supporting the prevailing view
that the different detection functions complement each other.
This result is not surprising if we consider that both functions
outperform the others, and that the spectral difference and the
phase deviation can be seen as subsets of the complex-domain
approach.

4 Conclusions and Future work
A complete system for real-time extraction of onsets from

a live audio source has been described. Experiments confirm
that combinations of the different detection functions along
with a simple silence gate increase good detections and lower
over-detections. The proposed peak-picking approach returns
satisfactory results in a low-latency environment. Current de-
velopment efforts are focused on the real-time estimation of
attributes for the segmented note objects.

While the code would clearly benefit from some profil-
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Figure 3: Correct detections against false positives as in Fig. 2
but using a silence gate.

ing, the design of the library allows the use of selected units
from other plug-in systems such as Max, OSC, CLAM and
LADSPA. Simple programs have already been written for use
during live music performances – for instance to drive MIDI
instruments.
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ABSTRACT

We present a new system for the estimation of note at-
tributes from a live monophonic music source, within a
short time delay and without any previous knowledge of
the signal. The labelling is based on the temporal segmen-
tation and the successive estimation of the fundamental
frequency of the current note object. The setup, imple-
mented around a small C library, is directed at the robust
note segmentation of a variety of audio signals. A system
for evaluation of performances is also presented. The fur-
ther extension to polyphonic signals is considered, as well
as design concerns such as portability and integration in
other software environments.

1. INTRODUCTION

1.1. Motivation

The real-time segmentation and attribute estimation of mu-
sical objects are still novel fields of research with pos-
sible applications in audio coding, music-oriented tasks
such as score following and live content-based processing
of music data. In [1] a framework was presented for the
real-time transmission of audio contents as objects, within
the context of spectral modelling synthesis. In [2] we in-
troduced a system for the object-based construction of a
spectral-model of a musical instrument. This work was
extended in [3], when we presented an algorithm for the
real-time segmentation of note objects in music signals.

In the present paper we will concentrate on the real-
time estimation of attributes of the segmented note ob-
jects, specifically their fundamental frequency f 0. This
is an important step towards the understanding of higher-
level structures in music – e.g. melody, harmony, etc.

We describe a new system for the low-latency charac-
terisation of a temporal sonic object, based on the infor-
mation provided by our note segmentation algorithm [3].
The aim is to obtain a robust note labelling on a large va-
riety of musical signals and in various acoustic environ-
ments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
c© 2004 Universitat Pompeu Fabra.
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Figure 1. Overview of the different modules of the system

A method for evaluation of this labelling process is pro-
posed and tested. Special attention will be paid to the de-
lay introduced by the f 0 computation, and how the con-
straints imposed by low-latency environments affect the
reliability of our estimation.

1.2. f0 Estimation

The fundamental frequency f 0 is the lowest frequency of
a harmonic sound: its partials appear at frequencies which
are multiples of f0. For most sounds the fundamental fre-
quency is strongly related to the psychoacoustical concept
of pitch – although in some cases they can be found to
differ. This explains why, often in the literature, the terms
pitch detection and f0 estimation are used indistinctively.

There are a number of methods developed for f 0 es-
timation in monophonic audio mostly for speech signals.
These include approaches such as time-domain and spec-
tral autocorrelation [4], the two-way mismatch algorithm
[5] and the use of perceptual models [6]. However, while
some of these algorithms have already been successfully
tested for real-time f0 estimation on a frame-by-frame ba-
sis, little has been done to estimate the pitch of segmented
note objects online.

The complexity of this task increases when dealing with
polyphonic sounds. In this paper we will use a pitch algo-
rithm [7] to focus on the analysis of note objects in mono-
phonic music, using both onset and pitch detections to-
gether. Our choice of pitch detection algorithm is driven
towards the extension to polyphonic signals. While other
methods for selecting the note pitch must be further tested,
we focus here on the behaviour of the system rather than
on the f0 estimation itself, so as to tackle the different
issues of the note decision process.



1.3. Paper organisation

This paper is organised as follows: in Section 2 we explain
the process implemented for onset detection and f 0 esti-
mation, and describe a first approach for maximising per-
formance based on object segmentation; in Section 3 we
present an evaluation method for this segmentation pro-
cess;the implementation in the form of a software library
is detailed. Section 4 presents quantitative results of the
integration of the different parts of the system. Finally,
we present our conclusions in Section 5.

2. SYSTEM OVERVIEW

Figure 1 shows an overview of the main system compo-
nents. The different elements composing the system will
be described in the following order: the silence gate, the
onset detection functions module, its associated peak pick-
ing module, the fundamental frequency estimation, and
the final note decision module. In this last step pitches
values and onset times are filtered into a list of note can-
didates.

We use two phase vocoders in parallel for both onset
and pitch detections. For a signal x at time n, X [n] de-
fines its Short Time Fourier Transform (STFT), calculated
using the phase vocoder. Xk[n], the value of the kth bin of
X [n], can be expressed in its polar form as |Xk[n]|ejφk[n]

where |Xk[n]| is the spectral magnitude of this bin, and
φk[n] its phase.

2.1. Silence gate

A silence gate first ensure the suppression of spurious can-
didates in background noise. When the signal drops under
a certain level, the onsets are discarded. Because the noise
level can dramatically change between different auditory
scenes, this level can be adjusted to minimise the onsets
detected during pauses and silences.

2.2. Onset detection

Our onset detection implementation has been previously
described in [3], along with key references to the relevant
literature. The process consists of the construction of a
detection function derived from one or a few consecutive
spectral frames of a phase vocoder. The detection func-
tion increases at the beginning of the note attacks. Peak-
picking is required to select only the relevant onsets.

Different detection functions are available in our im-
plementation, and we have measured how well they per-
form on a variety of signals: the average rates of correct
detections and false positives have been evaluated at dif-
ferent values of the peak picking thresholding parameter.
A simple and very efficient example is the High Frequency
Content (HFC) [8], which can be derived from one spec-
tral frame Xk[n] as:

DH [n] =

N
∑

k=0

k|Xk[n]| (1)

The HFC precisely identifies percussive onsets, but is less
responsive to non- percussive components. In the complex-
domain approach [9], to cope with harmonic changes of
low transient timbres, a target STFT value is generated as
follows:

{

X̂k[n] = |Xk[n]|ejφ̂k[n]

φ̂k[n] = princarg (2φk[n − 1] − φk [n − 2])

(2)
where φ̂k [n] is the estimated phase deviation. The mea-
sure of the Euclidean distance, in the complex-domain,
between the target STFT X̂k and the observed frame Xk

allow the construction of a detection function as:

DC [n] =
1

N

N
∑

k=0

∥

∥

∥
X̂k[n] − Xk[n]

∥

∥

∥

2

(3)

By looking for changes at both energy and phase, the com-
plex-domain approach – and other methods such as the
spectral difference approach – quantifies both percussive
and tonal onsets.

The detection functions still contain spurious peaks and
some pre-processing, such as low pass filtering, is required
before peak picking. In order to select the onsets inde-
pendently of the current context, a dynamic threshold is
computed over a small number of D[n] points. A me-
dian filter is applied first for smoothing and derivation of
the detection function; a proportion of the mean over that
same number of points is included in the threshold to re-
ject the smaller peaks:

δt[n] = median(D[n − b] . . . D[n + a])
+ α〈D[n − b] . . . D[n + a]〉

(4)

The values a and b define the window of detection points
considered, typically one frame in advance and five frames
in the past. Increasing the proportion α prevents the se-
lection of the smallest peaks in the detection function and
decrease the number of false positives.

While the HFC detects percussive events successfully,
the complex-domain approach – and other methods such
as the spectral difference approach – reacts better on tonal
sounds such as bowed strings but tend to over-detect per-
cussive events. Experimental results have shown that the
combined use of two detection functions, such as the mul-
tiplication of the complex domain and the HFC functions,
increase the overall reliability of the results on the set
of real recordings, suggesting the complementarity of the
functions.

2.3. Pitch estimation

The following f0 estimation algorithm is derived from [7]
and the improvements described in [10]. Although we fo-
cus on its behaviour with monophonic signals, the method
has been designed to tackle polyphonic music signals. The
algorithm is based on the spectral frames Xk[n] of a phase
vocoder similar as that used in the onset detection func-
tions. The input signal is first pre-processed through an
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A-weighting IIR filter so as to enhance medium frequen-
cies and reduce the high and low parts of the spectrum.

The filtered signal is sent to a phase vocoder using a
window of typically 4096 samples for an audio sampler-
ate of 44.1 kHz. The longer windowing implies a longer
delay in the system but is required for accurate frequency
estimation of the mid frequencies. The overlap rate is the
same as the one used for the onset detection function. On
each frame, the magnitude spectrum is low pass filtered
and normalised.

After pre-processing, peaks are detected in the mag-
nitude spectral frame and the list of peaks is passed to
an harmonic comb. We assume that one of the P high-
est peaks corresponds to one of the partials of the present
notes – for monophonic signals, we will limit to the case
where P = 1. Each of these peaks generates a set of pitch
hypotheses defined by the first Z sub-harmonics as:

{f0
p,z =

fp

z
|z ∈ [1 . . . Z]|p ∈ [1 . . . P ]} (5)

and where fp is the frequency associated to the bin of
the pth peak, computed using a quadratic interpolation
method. For each of these f 0

p,z hypotheses a harmonic
grid is constructed over the spectral bins as:

Cp,z(k) =

{

1 if ∃ m s. t.
∣

∣

∣

1
m

k
f0

p,z
− N

fs

∣

∣

∣
< ωb

0 otherwise
(6)

where fs is the sampling frequency, m is an integer be-
tween 1 and M , the maximum number of harmonic con-
sidered. ωb, typically a quarter tone, is set to allow for
some uncertainty in the harmonic match of the the comb
filter.

Different criteria are checked along the evaluation of
each candidate combs. The two most important are the
number of partials matching to the comb harmonic grid,
and the comb energy, estimated as the total energy carried
by the set of partials.

2.4. Note Decision

The data incoming from the different modules must be
ordered carefully before the decision process. Different

approaches can be taken to address this issue. In our sys-
tem, we rely on the temporal onset detection, assuming it
is correct, and look for note pitches over the frames past
each onset.

While both pitch and onset vocoders operate at the same
overlap rate every 512 samples, long windows are required
for pitch estimation, and shorter windows of typically 1024
samples will feed the onset detection functions. Synchro-
nisation of the pitch candidates to the onset time is re-
quired. The temporal peak picking module of the detec-
tion function takes one overlap period. When using win-
dows 4 times longer for the pitches than for the onsets,
the pitch candidates of the frames are typically delayed by
about 2 overlap periods. The process is depicted in Fig-
ure 2.

In the attack of the note, just after the onset, pitch de-
tection during strong transient noises will tend to be diffi-
cult, since the transient covers most of the harmonic com-
ponents. These spurious pitch candidates need to be care-
fully discarded. Another source of error is when the am-
plitude of the different partial are changing within the note.
Octave or fifth errors may then occur.

To evaluate a note pitch candidate in a limited number
of frames after the onsets, a simple and efficient system
has been built by choosing the median over the candidates
that appear in the frames after the onset:

Pnote = median(Pq , Pq+1, ..., Pq+δ) (7)

where δ is the number of frames considered for the pitch
decision and will determine the total delay of the sys-
tem. The first q frames are not considered, so as to take
into account the delay between both pitch and onset phase
vocoders.

The median filter favors the selection of the most fre-
quently detected pitch candidate, while δ provides a con-
trol of the trade-off between the system delay and its ac-
curacy. This simple method proved to be successful at
selecting the most predominant pitch candidate over a few
frames after the onset. The note labelling is done by at-
taching the selected pitch candidate to the onset time pre-
viously detected.

3. EXPERIMENTAL SETUP

We describe here the evaluation technique used to esti-
mate the performance of our note identification system.
We will then describe our software implementation.

3.1. Performance estimation

A test bed for the evaluation of our system has been imple-
mented. Audio waveforms are generated using MIDI files
and analysed through our note labelling program. The
evaluation consist of the comparison between the origi-
nal MIDI score and the list of candidate event detections
we obtain, both against pitch and start time.

For our evaluation purposes, the scores were chosen
amongst various single voiced scores for piano, violin,
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clarinet, trumpet, flute and oboe. All scores have been
extracted from the Mutopia project [11]: some from sepa-
rate tracks of Mozart and Bach concertos and symphonies,
others from more recent compositions for solo instrument.
The MIDI files contain nuances and expressiveness. The
current database currently totalises 1946 notes.

The midi files are converted into raw waveforms using
the Timidity++ MIDI rendering software [12]. Each of the
scores can be rendered using any instrument, while a large
amount of settings and effects are available. For instance,
we used the Reverberation and Chorus settings, so that the
results sound more natural.

NOTE-ON events are extracted as a pair of MIDI pitch
and start time. Our main program is then called, in its off-
line mode, along with a set of parameters, to process the
waveform and store the note candidates in a similar list. A
Python script is then used to compare the original list to
the list of detected events.

If the detected event corresponds to a real note within
a tolerance window of length εt (ms) and with the correct
MIDI pitch rounded to the nearest integer, only then the
event is labelled as a correct detection. Incorrect detec-
tions can be easily characterised by their frequency error,
octave or fifth jumps, and their temporal error, doubled or
late detections.

An example of such a score comparison is given in Fig-
ure 3. Pitches are plotted versus times in this piano-roll
like graph. The original notes are drawn in solid lines, the
detected events in filled black squares. The plot illustrates
various types of errors.

3.2. Software implementation

This implementation is a development of the software li-
brary presented in [3]. The f 0 estimation runs in parallel
with the onset functions. The process runs within the Jack
Audio Connection Kit (JACK) server for experiments on

live signals. In this case, an audio input is created for lis-
tening to incoming data, and a MIDI output port is created
to output the result of the transcription to another MIDI
device.

The library has been kept small and its dependancies
limited to a small number of widely used libraries.

We believe that the current setup provides a solid foun-
dation for the development of test beds for various Mu-
sic Information Retrieval techniques, such as blind instru-
ment recognition methods or testing algorithm robustness
against various compression formats.

4. INITIAL RESULTS

In [3], the different detection functions were evaluated on
a set of real recordings, representing a wide range of music
styles and sound mixture. All detection functions have
been peak-picked using a window of size a = 5 and b = 1
in Eq. 4. The proportions of correct and misplaced onsets
have been estimated by comparing the detections against
the hand-labelled onsets.

We found the product of the HFC and complex do-
main onset functions gave best performance. With a fixed
threshold of α = 0.300, we obtained typical detection
rates of 96% correct detections and 6% of false positives.
In the following two experiments, we fixed α to a value of
0.300: a slight over-detection is allowed to ensure a high
correct detection proportion, on which we rely in the note
pitch decision.

We can observe the performance of the note decision
process by varying δ the number of frame considered in
Eq. 7. The results obtained with different instruments for
values of δ between 2 and 25 are plotted in Figure 4.

The performance for the whole set of MIDI test files
(plus signs in Figure 4) reaches 90% of correct note la-
belling at δ = 20, which gives a decision delay of 200 ms
with a total rate of 12.5% of false positives.

Some instruments tend to be successfully labelled within
as few as δ = 3 frames, as shown with the harpsichord
results (open squares). Low δ values affect the perfor-
mance of the flute, which may be explained by the soft
and breathy attack of the flute. This is corrected using a
longer value of δ.

Another problem occur when a large value of δ is used
on long notes: the performance then tends to decrease.
Changes in the relative amplitude of the partials may cause
the pitch candidate to switch to another harmonic. This
behaviour is observed on the second violin score (aster-
isks) which has a moderated tempo and numerous long
notes.

The general irregular behaviour of the curves is prob-
ably due to the combined effect of the transients and the
median filter, when only 2 to 9 frames are considered.

The time precision of our system is evaluated using a
fixed value of δ = 15 by changing the time tolerance εt

in the list comparison function. The results are displayed
in Figure 5. Within a 50 ms tolerance window, the sys-
tem reaches an optimal score alignment. Overall results
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Figure 4. Correct note estimation results for different val-
ues of δ in (7), the number of pitch frames the decision is
taken on, and for different instruments. α is fixed at 0.300.

are adversely affected by the flute performance, especially
when the time tolerance is decreased to under 30 ms.

5. CONCLUSIONS

We have presented a complete system to perform note ob-
jects labelling of a wide range of monophonic music sig-
nals within a short delay after the onset detections. Our
small library aims at being lightweight, portable, and used
from other softwares, either real time or off-line. The li-
brary will be made available under the GNU General Pub-
lic License (GPL). End user applications have started with
various interfaces to other software environments such as
CLAM and Audacity.

Using a varied set of MIDI files, the evaluation of this
note object extraction system has shown useful perfor-
mances can be obtained with different instruments. Re-
sults have enlightened some of the issues encountered:
soft attacks tend to delay the detection of onsets; transient
components affect the pitch decision in the few frames af-
ter the onset. The onset detection threshold (α) and the
note decision delay (δ) are important parameters control-
ling under or over-detection on one hand, and the delay
and accuracy of the system on the other hand.

Evaluation of the performance should also be tested on
real recordings. Possible improvements include the use of
a specific module for bass line detections and the elabora-
tion of additional features to be added to the note labels.
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Rui Pedro Paiva, Teresa Mendes, and Aḿılcar Cardoso. A methodology for detection

of melody in polyphonic musical signals. In Proceedings of the Audio Engeeniring

Society 116th Convention, Berlin, Germany, May 2004.

Elias Pampalk, Tim Pohle, and Gerhard Widmer. Dynamic playlist generation based

on skipping behavior. In Proceedings of the International Symposium on Music

Information Retrieval (ISMIR), London, UK, September 2005.

Martin Piszczalski and Bernard A. Galler. Automatic music trancription. Computer

Music Journal, 1(4):24–31, 1977.

Michael R. Portnoff. Implementation of the digital phase vocoder using the fast

Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Process-

ing, 24(3):243–248, 1976.

Daniel Pressnitzer, Roy D. Patterson, and Katrin Krumbholz. The lower limit of

melodic pitch. Journal of the Acoustical Society of America, 109(5):2074–2084,

2001.

Miller S. Puckette. Pure Data. In Proceedings of the International Computer

Music Conference (ICMC), pages 269–272, Hong Kong University of Science and

Technology, 1996a.

Miller S. Puckette. Pure Data: another integrated computer music environment. In

Proceedings of the Second Intercollege Computer Music Concerts, pages 37–41,

Tachikawa, Japan, 1996b.

Miller S. Puckette, Theodore Apel, and David D. Zicarelli. Real-time analysis tools

for PD and MSP. In Proceedings of the International Computer Music Conference

(ICMC), Ann Arbor, University of Michigan, USA, 1998.

http://lilypond.org


BIBLIOGRAPHY 210

Elena Punskaya, Christophe Andrieu, Arnaud Doucet, and William J. Fitzgerald.

Bayesian curve fitting using MCMC with application to signal segmentation. IEEE

Transactions on Signal Processing, 50(3):747–768, March 2002.

Heiko Purnhagen and Nikolaus Meine. HILN - the MPEG-4 parametric audio cod-

ing tools. In Proceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS 2000), Geneva, Italy, 2000.

Lawrence R. Rabiner. A tutorial on HMM and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Lawrence R. Rabiner and Ronald W. Schafer. Digital Processing of Speech Signals.

Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1978.

Lawrence R. Rabiner, Marvin R. Sambur, and Carolyn E. Schmidt. Applications

of a nonlinear smoothing algorithm to speech processing. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 23(6):552–557, December 1975.

Lawrence R. Rabiner, Michael J. Cheng, Aaron E. Rosenberg, and Carol A. Mc-

Gonegal. A comparative performance study of several pitch detection algorithms.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(5):399–418,

October 1976.

Christopher Raphael. Automatic rhythm transcription. In Proceedings of the In-

ternational Symposium on Music Information Retrieval (ISMIR), pages 99–107,

Bloomington, Indiana, USA, October 2001a.

Christopher Raphael. Music Plus One: A system for expressive and flexible musical

accompaniment. In Proceedings of the International Computer Music Conference

(ICMC), Havana, Cuba, 2001b.

Emmanuel Ravelli, Mark Sandler, and Juan-Pablo Bello. Fast implementation for

non-liner time scaling of stereo signals. In Proceedings of the International Con-

ference on Digital Audio Effects (DAFx-05), pages 182–185, Madrid, Spain, 2005.

Eric S. Raymond. The Art of Unix Programming. Addison-Wesley, 2003. ISBN

0-13-142901-9.

Bruno H. Repp. Some empirical observations on sound level properties of recorded

piano tones. Journal of the Acoustical Society of America, 93(2):1136–1144,

1993.



BIBLIOGRAPHY 211

Jean-Claude Risset. Computer study of trumpet tones. Journal of the Acoustical

Society of America, 38(5):912–920, 1969.

Jean-Claude Risset and Max V. Matthews. Analysis of musical-instrument tones.

Physics Today, 22(2):22–30, 1969.

Roelof J. Ritsma. Existence region of the tonal residue. Journal of the Acoustical

Society of America, 34(9A):1224–1229, 1962.

Curtis Roads. The Computer Music Tutorial. MIT Press, Cambridge, Massachusetts,

1996. ISBN 0-262-68082-3.

John Roeder and Keith Hamel. Introduction to the Physics and Psychophysics of

Music. Springer-Verlag, New York, 2nd edition, 1975.

Oarih Ropshkow. Reproduction of the original Fletcher and Munson equal loudness

curves. http://en.wikipedia.org/wiki/Image:FletcherMunson ELC.png,

2005. modified for this document, Last visited: Fri June 2 2006.

David Rosenthal, Masataka Goto, and Yoichi Muraoka. Rhythm tracking using mul-

tiple hypotheses. In Proceedings of the International Computer Music Conference

(ICMC), pages 85–87, Danish Institute of Electronic Music (DIEM), Aarhus, Den-

mark, 1994.

Matti Ryynänen and Anssi Klapuri. Modelling of note events for singing transcrip-

tion. In Proceedings of the ISCA Tutorial and Research Workshop on Statistical

and Perceptual Audio Processing, Jeju, Korea, October 2004.

Matti Ryynänen and Anssi Klapuri. Polyphonic music transcription using note event

modeling. In Proceedings of the IEEE Workshop on Applications of Signal Pro-

cessing to Audio and Acoustics, New Paltz, New York, October 2005.
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