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ABSTRACT

We present a new system for the estimation of note at-
tributes from a live monophonic music source, within a
short time delay and without any previous knowledge of
the signal. The labelling is based on the temporal segmen-
tation and the successive estimation of the fundamental
frequency of the current note object. The setup, imple-
mented around a small C library, is directed at the robust
note segmentation of a variety of audio signals. A system
for evaluation of performances is also presented. The fur-
ther extension to polyphonic signals is considered, as well
as design concerns such as portability and integration in
other software environments.

1. INTRODUCTION

1.1. Motivation

The real-time segmentation and attribute estimation of mu-
sical objects are still novel fields of research with pos-
sible applications in audio coding, music-oriented tasks
such as score following and live content-based processing
of music data. In [1] a framework was presented for the
real-time transmission of audio contents as objects, within
the context of spectral modelling synthesis. In [2] we in-
troduced a system for the object-based construction of a
spectral-model of a musical instrument. This work was
extended in [3], when we presented an algorithm for the
real-time segmentation of note objects in music signals.

In the present paper we will concentrate on the real-
time estimation of attributes of the segmented note ob-
jects, specifically their fundamental frequency f 0. This
is an important step towards the understanding of higher-
level structures in music – e.g. melody, harmony, etc.

We describe a new system for the low-latency charac-
terisation of a temporal sonic object, based on the infor-
mation provided by our note segmentation algorithm [3].
The aim is to obtain a robust note labelling on a large va-
riety of musical signals and in various acoustic environ-
ments.
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Figure 1. Overview of the different modules of the system

A method for evaluation of this labelling process is pro-
posed and tested. Special attention will be paid to the de-
lay introduced by the f 0 computation, and how the con-
straints imposed by low-latency environments affect the
reliability of our estimation.

1.2. f0 Estimation

The fundamental frequency f 0 is the lowest frequency of
a harmonic sound: its partials appear at frequencies which
are multiples of f0. For most sounds the fundamental fre-
quency is strongly related to the psychoacoustical concept
of pitch – although in some cases they can be found to
differ. This explains why, often in the literature, the terms
pitch detection and f0 estimation are used indistinctively.

There are a number of methods developed for f 0 es-
timation in monophonic audio mostly for speech signals.
These include approaches such as time-domain and spec-
tral autocorrelation [4], the two-way mismatch algorithm
[5] and the use of perceptual models [6]. However, while
some of these algorithms have already been successfully
tested for real-time f0 estimation on a frame-by-frame ba-
sis, little has been done to estimate the pitch of segmented
note objects online.

The complexity of this task increases when dealing with
polyphonic sounds. In this paper we will use a pitch algo-
rithm [7] to focus on the analysis of note objects in mono-
phonic music, using both onset and pitch detections to-
gether. Our choice of pitch detection algorithm is driven
towards the extension to polyphonic signals. While other
methods for selecting the note pitch must be further tested,
we focus here on the behaviour of the system rather than
on the f0 estimation itself, so as to tackle the different
issues of the note decision process.



1.3. Paper organisation

This paper is organised as follows: in Section 2 we explain
the process implemented for onset detection and f 0 esti-
mation, and describe a first approach for maximising per-
formance based on object segmentation; in Section 3 we
present an evaluation method for this segmentation pro-
cess;the implementation in the form of a software library
is detailed. Section 4 presents quantitative results of the
integration of the different parts of the system. Finally,
we present our conclusions in Section 5.

2. SYSTEM OVERVIEW

Figure 1 shows an overview of the main system compo-
nents. The different elements composing the system will
be described in the following order: the silence gate, the
onset detection functions module, its associated peak pick-
ing module, the fundamental frequency estimation, and
the final note decision module. In this last step pitch val-
ues and onset times are filtered into a list of note candi-
dates.

We use two phase vocoders in parallel for both onset
and pitch detections. For a signal x at time n, X [n] de-
fines its Short Time Fourier Transform (STFT), calculated
using the phase vocoder. Xk[n], the value of the kth bin of
X [n], can be expressed in its polar form as |Xk[n]|ejφk[n]

where |Xk[n]| is the spectral magnitude of this bin, and
φk[n] its phase.

2.1. Silence gate

A silence gate first ensures the suppression of spurious
candidates in background noise. When the signal drops
under a certain level, the onsets are discarded. Because
the noise level can dramatically change between different
auditory scenes, this level can be adjusted to minimise the
onsets detected during pauses and silences.

2.2. Onset detection

Our onset detection implementation has been previously
described in [3], along with key references to the relevant
literature. The process consists of the construction of a
detection function derived from one or a few consecutive
spectral frames of a phase vocoder. The detection func-
tion increases at the beginning of the note attacks. Peak-
picking is required to select only the relevant onsets.

Different detection functions are available in our im-
plementation, and we have measured how well they per-
form on a variety of signals: the average rates of correct
detections and false positives have been evaluated at dif-
ferent values of the peak picking thresholding parameter.
A simple and very efficient example is the High Frequency
Content (HFC) [8], which can be derived from one spec-
tral frame Xk[n] as:

DH [n] =

N
∑

k=0

k|Xk[n]| (1)

The HFC precisely identifies percussive onsets, but is less
responsive to non- percussive components. In the complex-
domain approach [9], to cope with harmonic changes of
low transient timbres, a target STFT value is generated as
follows:

{

X̂k[n] = |Xk[n]|ejφ̂k[n]

φ̂k[n] = princarg (2φk[n − 1] − φk [n − 2])

(2)
where φ̂k [n] is the estimated phase deviation. The mea-
sure of the Euclidean distance, in the complex-domain,
between the target STFT X̂k and the observed frame Xk

allow the construction of a detection function as:

DC [n] =
1

N

N
∑

k=0

∥

∥

∥
X̂k[n] − Xk[n]

∥

∥

∥

2

(3)

By looking for changes at both energy and phase, the com-
plex-domain approach – and other methods such as the
spectral difference approach – quantifies both percussive
and tonal onsets.

The detection functions still contain spurious peaks and
some pre-processing, such as low pass filtering, is required
before peak picking. In order to select the onsets inde-
pendently of the current context, a dynamic threshold is
computed over a small number of D[n] points. A me-
dian filter is applied first for smoothing and derivation of
the detection function; a proportion of the mean over that
same number of points is included in the threshold to re-
ject the smaller peaks:

δt[n] = median(D[n − b] . . . D[n + a])
+ α〈D[n − b] . . . D[n + a]〉

(4)

The values a and b define the window of detection points
considered, typically one frame in advance and five frames
in the past. Increasing the proportion α prevents the se-
lection of the smallest peaks in the detection function and
decrease the number of false positives.

While the HFC detects percussive events successfully,
the complex-domain approach – and other methods such
as the spectral difference approach – reacts better on tonal
sounds such as bowed strings but tend to over-detect per-
cussive events. Experimental results have shown that the
combined use of two detection functions, such as the mul-
tiplication of the complex domain and the HFC functions,
increase the overall reliability of the results on the set
of real recordings, suggesting the complementarity of the
functions.

2.3. Pitch estimation

The following f0 estimation algorithm is derived from [7]
and the improvements described in [10]. Although we fo-
cus on its behaviour with monophonic signals, the method
has been designed to tackle polyphonic music signals. The
algorithm is based on the spectral frames Xk[n] of a phase
vocoder similar as that used in the onset detection func-
tions. The input signal is first pre-processed through an
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Figure 2. Detail of the synchronisation of the onset detec-
tion module and the pitch detection module

A-weighting IIR filter so as to enhance medium frequen-
cies and reduce the high and low parts of the spectrum.

The filtered signal is sent to a phase vocoder using a
window of typically 4096 samples for an audio sample-
rate of 44.1 kHz. The longer windowing implies a longer
delay in the system but is required for accurate frequency
estimation of the mid frequencies. The overlap rate is the
same as the one used for the onset detection function. On
each frame, the magnitude spectrum is low pass filtered
and normalised.

After pre-processing, peaks are detected in the mag-
nitude spectral frame and the list of peaks is passed to
an harmonic comb. We assume that one of the P high-
est peaks corresponds to one of the partials of the present
notes – for monophonic signals, we will limit to the case
where P = 1. Each of these peaks generates a set of pitch
hypotheses defined by the first Z sub-harmonics as:

{f0
p,z =

fp

z
|z ∈ [1 . . . Z]|p ∈ [1 . . . P ]} (5)

and where fp is the frequency associated to the bin of
the pth peak, computed using a quadratic interpolation
method. For each of these f 0

p,z hypotheses a harmonic
grid is constructed over the spectral bins as:

Cp,z(k) =

{

1 if ∃ m s. t.
∣

∣

∣

1
m

k
f0

p,z
− N

fs

∣

∣

∣
< ωb

0 otherwise
(6)

where fs is the sampling frequency, m is an integer be-
tween 1 and M , the maximum number of harmonic con-
sidered. ωb, typically a quarter tone, is set to allow for
some uncertainty in the harmonic match of the the comb
filter.

Different criteria are checked along the evaluation of
each candidate combs. The two most important are the
number of partials matching to the comb harmonic grid,
and the comb energy, estimated as the total energy carried
by the set of partials.

2.4. Note Decision
The data incoming from the different modules must be
ordered carefully before the decision process. Different

approaches can be taken to address this issue. In our sys-
tem, we rely on the temporal onset detection, assuming it
is correct, and look for note pitches over the frames past
each onset.

While both pitch and onset vocoders operate at the same
overlap rate every 512 samples, long windows are required
for pitch estimation, and shorter windows of typically 1024
samples will feed the onset detection functions. Synchro-
nisation of the pitch candidates to the onset time is re-
quired. The temporal peak picking module of the detec-
tion function takes one overlap period. When using win-
dows 4 times longer for the pitches than for the onsets,
the pitch candidates of the frames are typically delayed by
about 2 overlap periods. The process is depicted in Fig-
ure 2.

In the attack of the note, just after the onset, pitch de-
tection during strong transient noises will tend to be diffi-
cult, since the transient covers most of the harmonic com-
ponents. These spurious pitch candidates need to be care-
fully discarded. Another source of error is when the am-
plitude of the different partial are changing within the note.
Octave or fifth errors may then occur.

To evaluate a note pitch candidate in a limited number
of frames after the onsets, a simple and efficient system
has been built by choosing the median over the candidates
that appear in the frames after the onset:

Pnote = median(Pq , Pq+1, ..., Pq+δ) (7)

where δ is the number of frames considered for the pitch
decision and will determine the total delay of the sys-
tem. The first q frames are not considered, so as to take
into account the delay between both pitch and onset phase
vocoders.

The median filter favors the selection of the most fre-
quently detected pitch candidate, while δ provides a con-
trol of the trade-off between the system delay and its ac-
curacy. This simple method proved to be successful at
selecting the most predominant pitch candidate over a few
frames after the onset. The note labelling is done by at-
taching the selected pitch candidate to the onset time pre-
viously detected.

3. EXPERIMENTAL SETUP

We describe here the evaluation technique used to esti-
mate the performance of our note identification system.
We will then describe our software implementation.

3.1. Performance estimation

A test bed for the evaluation of our system has been imple-
mented. Audio waveforms are generated using MIDI files
and analysed through our note labelling program. The
evaluation consist of the comparison between the origi-
nal MIDI score and the list of candidate event detections
we obtain, both against pitch and start time.

For our evaluation purposes, the scores were chosen
amongst various single voiced scores for piano, violin,
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Figure 3. Example of typical note segmentation errors:
detected events are shown in filled box, the original score
is outlined. Extract from Partita in A minor for Solo Flute,
J. S. Bach, BWV 1013, 1st Movement: Allemande.

clarinet, trumpet, flute and oboe. All scores have been
extracted from the Mutopia project [11]: some from sepa-
rate tracks of Mozart and Bach concertos and symphonies,
others from more recent compositions for solo instrument.
The MIDI files contain nuances and expressiveness. The
current database currently totalises 1946 notes.

The midi files are converted into raw waveforms using
the Timidity++ MIDI rendering software [12]. Each of the
scores can be rendered using any instrument, while a large
amount of settings and effects are available. For instance,
we used the Reverberation and Chorus settings, so that the
results sound more natural.

NOTE-ON events are extracted as a pair of MIDI pitch
and start time. Our main program is then called, in its off-
line mode, along with a set of parameters, to process the
waveform and store the note candidates in a similar list. A
Python script is then used to compare the original list to
the list of detected events.

If the detected event corresponds to a real note within
a tolerance window of length εt (ms) and with the correct
MIDI pitch rounded to the nearest integer, only then the
event is labelled as a correct detection. Incorrect detec-
tions can be easily characterised by their frequency error,
octave or fifth jumps, and their temporal error, doubled or
late detections.

An example of such a score comparison is given in Fig-
ure 3. Pitches are plotted versus times in this piano-roll
like graph. The original notes are drawn in solid lines, the
detected events in filled black squares. The plot illustrates
various types of errors.

3.2. Software implementation

This implementation is a development of the software li-
brary presented in [3]. The f 0 estimation runs in parallel
with the onset functions. The process runs within the Jack
Audio Connection Kit (JACK) server for experiments on

live signals. In this case, an audio input is created for lis-
tening to incoming data, and a MIDI output port is created
to output the result of the transcription to another MIDI
device.

The library has been kept small and its dependancies
limited to a small number of widely used libraries.

We believe that the current setup provides a solid foun-
dation for the development of test beds for various Mu-
sic Information Retrieval techniques, such as blind instru-
ment recognition methods or testing algorithm robustness
against various compression formats.

4. INITIAL RESULTS

In [3], the different detection functions were evaluated on
a set of real recordings, representing a wide range of music
styles and sound mixture. All detection functions have
been peak-picked using a window of size a = 5 and b = 1
in Eq. 4. The proportions of correct and misplaced onsets
have been estimated by comparing the detections against
the hand-labelled onsets.

We found the product of the HFC and complex do-
main onset functions gave best performance. With a fixed
threshold of α = 0.300, we obtained typical detection
rates of 96% correct detections and 6% of false positives.
In the following two experiments, we fixed α to a value of
0.300: a slight over-detection is allowed to ensure a high
correct detection proportion, on which we rely in the note
pitch decision.

We can observe the performance of the note decision
process by varying δ the number of frame considered in
Eq. 7. The results obtained with different instruments for
values of δ between 2 and 25 are plotted in Figure 4.

The performance for the whole set of MIDI test files
(plus signs in Figure 4) reaches 90% of correct note la-
belling at δ = 20, which gives a decision delay of 200 ms
with a total rate of 12.5% of false positives.

Some instruments tend to be successfully labelled within
as few as δ = 3 frames, as shown with the harpsichord
results (open squares). Low δ values affect the perfor-
mance of the flute, which may be explained by the soft
and breathy attack of the flute. This is corrected using a
longer value of δ.

Another problem occur when a large value of δ is used
on long notes: the performance then tends to decrease.
Changes in the relative amplitude of the partials may cause
the pitch candidate to switch to another harmonic. This
behaviour is observed on the second violin score (aster-
isks) which has a moderated tempo and numerous long
notes.

The general irregular behaviour of the curves is prob-
ably due to the combined effect of the transients and the
median filter, when only 2 to 9 frames are considered.

The time precision of our system is evaluated using a
fixed value of δ = 15 by changing the time tolerance εt

in the list comparison function. The results are displayed
in Figure 5. Within a 50 ms tolerance window, the sys-
tem reaches an optimal score alignment. Overall results
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Figure 4. Correct note estimation results for different val-
ues of δ in (7), the number of pitch frames the decision is
taken on, and for different instruments. α is fixed at 0.300.

are adversely affected by the flute performance, especially
when the time tolerance is decreased to under 30 ms.

5. CONCLUSIONS

We have presented a complete system to perform note ob-
jects labelling of a wide range of monophonic music sig-
nals within a short delay after the onset detections. Our
small library aims at being lightweight, portable, and used
from other softwares, either real time or off-line. The li-
brary will be made available under the GNU General Pub-
lic License (GPL). End user applications have started with
various interfaces to other software environments such as
CLAM and Audacity.

Using a varied set of MIDI files, the evaluation of this
note object extraction system has shown useful perfor-
mances can be obtained with different instruments. Re-
sults have enlightened some of the issues encountered:
soft attacks tend to delay the detection of onsets; transient
components affect the pitch decision in the few frames af-
ter the onset. The onset detection threshold (α) and the
note decision delay (δ) are important parameters control-
ling under or over-detection on one hand, and the delay
and accuracy of the system on the other hand.

Evaluation of the performance should also be tested on
real recordings. Possible improvements include the use of
a specific module for bass line detections and the elabora-
tion of additional features to be added to the note labels.

6. ACKNOWLEDGEMENTS

PB is supported by a Studentship from the Department of
Electronic Engineering at Queen Mary College, Univer-
sity of London. This research has been partially funded by
the EU-FP6-IST-507142 project SIMAC (Semantic Inter-
action with Music Audio Contents) and by EPSRC grant
GR/54620.

 0

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80  90  100

Co
rre

ct
 d

et
ec

tio
ns

 (%
)

Time tolerance (ms)

flute
clarinet

violin
harpsichord

overall

Figure 5. Correct note detections for different instru-
ments plotted against time tolerance εt for values from
εt = 10 ms to εt = 100.

7. REFERENCES

[1] X. Amatrian and P. Herrera, “Transmitting audio
content as sound objects,” in Proc. of AES22 Inter-
nat. Conference on Virtual Synthetic and Entertain-
ment, Audio Espoo, Finland, 2002, pp. 278–288.

[2] P. M. Brossier, M. Sandler, and M. D. Plumbley,
“Real time object based coding,” in Proceedings
of the Audio Engeeniring Society, 114th Convention,
Amsterdam, The Netherlands, 2003.

[3] P. M. Brossier, J. P. Bello, and M. D. Plumbley,
“Real-time temporal segmentation of note objects in
music signals,” in Proceedings of the ICMC, Miami,
Florida, 2004, ICMA, Conference submission.

[4] J. C. Brown and B. Zhang, “Musical Frequency
Tracking using the Methods of Conventional and
’Narrowed’ Autocorrelation,” J. Acoust. Soc. Am.,
vol. 89, pp. 2346–2354, 1991.

[5] P. Cano, “Fundamental frequency estimation in the
SMS analysis,” in Proc. of COST G6 Conference on
Digital Audio Effects, Barcelona, 1998, pp. 99–102.

[6] M. Slaney and R. F. Lyon, “A Perceptual Pitch De-
tector,” in Proc. ICASSP, 1990, pp. 357–360.

[7] P. Lepain, “Polyphonic pitch extraction from music
signals,” Journal of New Music Research, vol. 28,
no. 4, pp. 296–309, 1999.

[8] P. Masri, Computer modeling of Sound for Transfor-
mation and Synthesis of Musical Signal, PhD disser-
tation, University of Bristol, UK, 1996.

[9] C. Duxbury, M. E. Davies, and M. B. Sandler,
“Complex domain onset detection for musical sig-
nals,” in Proc. of the DAFx Conf., London, 2003.

[10] J. P. Bello, Towards the Automated Analysis of
Simple Polyphonic Music, PhD dissertation, Queen



Mary, University of London, Centre for Digital Mu-
sic, 2003.

[11] “Mutopia Project, a public domain collection of
sheet music,” http://www.mutopiaproject.org/.

[12] T. Toivonen and M. Izumo, Timidity++, a MIDI
to WAVE converter/player, http://www.timidity.jp/,
1999, GNU/GPL.


